Victorov A, Radke C, Prausnitz J
Department of Chemistry, St. Petersburg University, 198504 St. Petersburg, Russia.
Phys Chem Chem Phys. 2006 Jan 14;8(2):264-78. doi: 10.1039/b512748c. Epub 2005 Oct 28.
For a microphase-separated diblock copolymer ionic gel swollen in salt solution, a molecular-thermodynamic model is based on the self-consistent field theory in the limit of strongly segregated copolymer subchains. The geometry of microdomains is described using the Milner generic wedge construction neglecting the packing frustration. A geometry-dependent generalized analytical solution for the linearized Poisson-Boltzmann equation is obtained. This generalized solution not only reduces to those known previously for planar, cylindrical and spherical geometries, but is also applicable to saddle-like structures. Thermodynamic functions are expressed analytically for gels of lamellar, bicontinuous, cylindrical and spherical morphologies. Molecules are characterized by chain composition, length, rigidity, degree of ionization, and by effective polymer-polymer and polymer-solvent interaction parameters. The model predicts equilibrium solvent uptakes and the equilibrium microdomain spacing for gels swollen in salt solutions. Results are given for details of the gel structure: distribution of mobile ions and polymer segments, and the electric potential across microdomains. Apart from effects obtained by coupling the classical Flory-Rehner theory with Donnan equilibria, viz. increased swelling with polyelectrolyte charge and shrinking of gel upon addition of salt, the model predicts the effects of microphase morphology on swelling.
对于在盐溶液中溶胀的微相分离双嵌段共聚物离子凝胶,一种分子热力学模型基于在强分离共聚物子链极限下的自洽场理论。微区的几何形状采用米尔纳通用楔形结构来描述,忽略堆积受挫情况。得到了线性化泊松 - 玻尔兹曼方程的一个与几何形状相关的广义解析解。这个广义解不仅可简化为先前已知的平面、圆柱和球形几何形状的解,还适用于鞍状结构。对于层状、双连续、圆柱和球形形态的凝胶,热力学函数以解析形式表示。分子由链组成、长度、刚性、电离度以及有效的聚合物 - 聚合物和聚合物 - 溶剂相互作用参数来表征。该模型预测了在盐溶液中溶胀的凝胶的平衡溶剂吸收量和平衡微区间距。给出了凝胶结构细节的结果:可移动离子和聚合物链段的分布,以及跨微区的电势。除了通过将经典的弗洛里 - 雷纳理论与唐南平衡耦合得到的效应,即随着聚电解质电荷增加溶胀增大以及加盐后凝胶收缩外,该模型还预测了微相形态对溶胀的影响。