文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

平衡皮层网络中的反应变异性。

Response variability in balanced cortical networks.

作者信息

Lerchner Alexander, Ursta Cristina, Hertz John, Ahmadi Mandana, Ruffiot Pauline, Enemark Søren

机构信息

Technical University of Denmark, 2800 Lyngby, Denmark.

出版信息

Neural Comput. 2006 Mar;18(3):634-59. doi: 10.1162/089976606775623261.


DOI:10.1162/089976606775623261
PMID:16483411
Abstract

We study the spike statistics of neurons in a network with dynamically balanced excitation and inhibition. Our model, intended to represent a generic cortical column, comprises randomly connected excitatory and inhibitory leaky integrate-and-fire neurons, driven by excitatory input from an external population. The high connectivity permits a mean field description in which synaptic currents can be treated as gaussian noise, the mean and autocorrelation function of which are calculated self-consistently from the firing statistics of single model neurons. Within this description, a wide range of Fano factors is possible. We find that the irregularity of spike trains is controlled mainly by the strength of the synapses relative to the difference between the firing threshold and the postfiring reset level of the membrane potential. For moderately strong synapses, we find spike statistics very similar to those observed in primary visual cortex.

摘要

我们研究了具有动态平衡兴奋和抑制的网络中神经元的尖峰统计。我们的模型旨在代表一个通用的皮质柱,由随机连接的兴奋性和抑制性漏电积分发放神经元组成,由来自外部群体的兴奋性输入驱动。高连接性允许进行平均场描述,其中突触电流可被视为高斯噪声,其均值和自相关函数根据单个模型神经元的发放统计自洽计算得出。在此描述范围内,可能存在广泛的Fano因子。我们发现,尖峰序列的不规则性主要由突触强度相对于发放阈值与膜电位发放后重置水平之间的差异来控制。对于中等强度的突触,我们发现尖峰统计与在初级视觉皮层中观察到的非常相似。

相似文献

[1]
Response variability in balanced cortical networks.

Neural Comput. 2006-3

[2]
Mean-driven and fluctuation-driven persistent activity in recurrent networks.

Neural Comput. 2007-1

[3]
Including long-range dependence in integrate-and-fire models of the high interspike-interval variability of cortical neurons.

Neural Comput. 2004-10

[4]
How noise affects the synchronization properties of recurrent networks of inhibitory neurons.

Neural Comput. 2006-5

[5]
Direction selectivity of excitation and inhibition in simple cells of the cat primary visual cortex.

Neuron. 2005-1-6

[6]
Solution methods for a new class of simple model neurons.

Neural Comput. 2007-12

[7]
Analysis of synchronization between two modules of pulse neural networks with excitatory and inhibitory connections.

Neural Comput. 2006-5

[8]
Mean field theory for a balanced hypercolumn model of orientation selectivity in primary visual cortex.

Network. 2006-6

[9]
The high-conductance state of cortical networks.

Neural Comput. 2008-1

[10]
Cross-correlations in high-conductance states of a model cortical network.

Neural Comput. 2010-2

引用本文的文献

[1]
Natural gradient enables fast sampling in spiking neural networks.

Adv Neural Inf Process Syst. 2022

[2]
Brain intrinsic magnetic susceptibility mapping depicts whole-brain functional connectivity balance of normal aging in lifespan.

Brain Struct Funct. 2023-7

[3]
The Mean Field Approach for Populations of Spiking Neurons.

Adv Exp Med Biol. 2022

[4]
Asynchronous and Coherent Dynamics in Balanced Excitatory-Inhibitory Spiking Networks.

Front Syst Neurosci. 2021-12-10

[5]
Thermodynamic Formalism in Neuronal Dynamics and Spike Train Statistics.

Entropy (Basel). 2020-11-23

[6]
Mechanisms underlying the response of mouse cortical networks to optogenetic manipulation.

Elife. 2020-1-17

[7]
How single neuron properties shape chaotic dynamics and signal transmission in random neural networks.

PLoS Comput Biol. 2019-6-10

[8]
How does transient signaling input affect the spike timing of postsynaptic neuron near the threshold regime: an analytical study.

J Comput Neurosci. 2018-4

[9]
From the statistics of connectivity to the statistics of spike times in neuronal networks.

Curr Opin Neurobiol. 2017-8-30

[10]
Towards a theory of cortical columns: From spiking neurons to interacting neural populations of finite size.

PLoS Comput Biol. 2017-4-19

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索