Suppr超能文献

神经元动力学与脉冲序列统计中的热力学形式论

Thermodynamic Formalism in Neuronal Dynamics and Spike Train Statistics.

作者信息

Cofré Rodrigo, Maldonado Cesar, Cessac Bruno

机构信息

CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile.

IPICYT/División de Matemáticas Aplicadas, San Luis Potosí 78216, Mexico.

出版信息

Entropy (Basel). 2020 Nov 23;22(11):1330. doi: 10.3390/e22111330.

Abstract

The Thermodynamic Formalism provides a rigorous mathematical framework for studying quantitative and qualitative aspects of dynamical systems. At its core, there is a variational principle that corresponds, in its simplest form, to the Maximum Entropy principle. It is used as a statistical inference procedure to represent, by specific probability measures (Gibbs measures), the collective behaviour of complex systems. This framework has found applications in different domains of science. In particular, it has been fruitful and influential in neurosciences. In this article, we review how the Thermodynamic Formalism can be exploited in the field of theoretical neuroscience, as a conceptual and operational tool, in order to link the dynamics of interacting neurons and the statistics of action potentials from either experimental data or mathematical models. We comment on perspectives and open problems in theoretical neuroscience that could be addressed within this formalism.

摘要

热力学形式体系为研究动力系统的定量和定性方面提供了一个严格的数学框架。其核心是一个变分原理,其最简单的形式对应于最大熵原理。它被用作一种统计推断程序,通过特定的概率测度(吉布斯测度)来表示复杂系统的集体行为。这个框架已在不同的科学领域得到应用。特别是,它在神经科学领域成果丰硕且颇具影响力。在本文中,我们回顾了如何将热力学形式体系作为一种概念和操作工具,在理论神经科学领域加以利用,以便将相互作用神经元的动力学与来自实验数据或数学模型的动作电位统计联系起来。我们对理论神经科学中可以在这种形式体系内解决的观点和开放问题进行了评论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/657c/7712217/c9d10db79b9b/entropy-22-01330-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验