文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

神经元动力学与脉冲序列统计中的热力学形式论

Thermodynamic Formalism in Neuronal Dynamics and Spike Train Statistics.

作者信息

Cofré Rodrigo, Maldonado Cesar, Cessac Bruno

机构信息

CIMFAV-Ingemat, Facultad de Ingeniería, Universidad de Valparaíso, Valparaíso 2340000, Chile.

IPICYT/División de Matemáticas Aplicadas, San Luis Potosí 78216, Mexico.

出版信息

Entropy (Basel). 2020 Nov 23;22(11):1330. doi: 10.3390/e22111330.


DOI:10.3390/e22111330
PMID:33266513
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7712217/
Abstract

The Thermodynamic Formalism provides a rigorous mathematical framework for studying quantitative and qualitative aspects of dynamical systems. At its core, there is a variational principle that corresponds, in its simplest form, to the Maximum Entropy principle. It is used as a statistical inference procedure to represent, by specific probability measures (Gibbs measures), the collective behaviour of complex systems. This framework has found applications in different domains of science. In particular, it has been fruitful and influential in neurosciences. In this article, we review how the Thermodynamic Formalism can be exploited in the field of theoretical neuroscience, as a conceptual and operational tool, in order to link the dynamics of interacting neurons and the statistics of action potentials from either experimental data or mathematical models. We comment on perspectives and open problems in theoretical neuroscience that could be addressed within this formalism.

摘要

热力学形式体系为研究动力系统的定量和定性方面提供了一个严格的数学框架。其核心是一个变分原理,其最简单的形式对应于最大熵原理。它被用作一种统计推断程序,通过特定的概率测度(吉布斯测度)来表示复杂系统的集体行为。这个框架已在不同的科学领域得到应用。特别是,它在神经科学领域成果丰硕且颇具影响力。在本文中,我们回顾了如何将热力学形式体系作为一种概念和操作工具,在理论神经科学领域加以利用,以便将相互作用神经元的动力学与来自实验数据或数学模型的动作电位统计联系起来。我们对理论神经科学中可以在这种形式体系内解决的观点和开放问题进行了评论。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/657c/7712217/a836d9947fdf/entropy-22-01330-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/657c/7712217/c9d10db79b9b/entropy-22-01330-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/657c/7712217/f2082d5097ec/entropy-22-01330-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/657c/7712217/6db833698ab7/entropy-22-01330-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/657c/7712217/a836d9947fdf/entropy-22-01330-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/657c/7712217/c9d10db79b9b/entropy-22-01330-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/657c/7712217/f2082d5097ec/entropy-22-01330-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/657c/7712217/6db833698ab7/entropy-22-01330-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/657c/7712217/a836d9947fdf/entropy-22-01330-g004.jpg

相似文献

[1]
Thermodynamic Formalism in Neuronal Dynamics and Spike Train Statistics.

Entropy (Basel). 2020-11-23

[2]
Large Deviations Properties of Maximum Entropy Markov Chains from Spike Trains.

Entropy (Basel). 2018-8-3

[3]
Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains.

Entropy (Basel). 2018-1-9

[4]
Morphogenesis as Bayesian inference: A variational approach to pattern formation and control in complex biological systems.

Phys Life Rev. 2020-7

[5]
[Dynamic paradigm in psychopathology: "chaos theory", from physics to psychiatry].

Encephale. 2001

[6]
Bayes Posterior Convergence for Loss Functions via Almost Additive Thermodynamic Formalism.

J Stat Phys. 2022

[7]
Quantum maximum-entropy principle for closed quantum hydrodynamic transport within a Wigner function formalism.

Phys Rev E Stat Nonlin Soft Matter Phys. 2011-12

[8]
Thermodynamic Formalism for General Iterated Function Systems with Measures.

Qual Theory Dyn Syst. 2023

[9]
Three faces of entropy for complex systems: Information, thermodynamics, and the maximum entropy principle.

Phys Rev E. 2017-9-15

[10]
Maximum caliber inference of nonequilibrium processes.

J Chem Phys. 2010-7-21

引用本文的文献

[1]
Optimal Population Coding for Dynamic Input by Nonequilibrium Networks.

Entropy (Basel). 2022-4-25

[2]
Retinal Processing: Insights from Mathematical Modelling.

J Imaging. 2022-1-17

[3]
Bounds on the Lifetime Expectations of Series Systems with IFR Component Lifetimes.

Entropy (Basel). 2021-3-24

本文引用的文献

[1]
Large-Deviation Approach to Random Recurrent Neuronal Networks: Parameter Inference and Fluctuation-Induced Transitions.

Phys Rev Lett. 2021-10-8

[2]
Large Deviations Properties of Maximum Entropy Markov Chains from Spike Trains.

Entropy (Basel). 2018-8-3

[3]
Information Entropy Production of Maximum Entropy Markov Chains from Spike Trains.

Entropy (Basel). 2018-1-9

[4]
SpikeInterface, a unified framework for spike sorting.

Elife. 2020-11-10

[5]
Ghost Attractors in Spontaneous Brain Activity: Recurrent Excursions Into Functionally-Relevant BOLD Phase-Locking States.

Front Syst Neurosci. 2020-4-17

[6]
Inferring and validating mechanistic models of neural microcircuits based on spike-train data.

Nat Commun. 2019-10-30

[7]
Next-generation neural field model: The evolution of synchrony within patterns and waves.

Phys Rev E. 2019-1

[8]
Modeling the Correlated Activity of Neural Populations: A Review.

Neural Comput. 2019-2

[9]
Maximum-entropy models reveal the excitatory and inhibitory correlation structures in cortical neuronal activity.

Phys Rev E. 2018-7

[10]
A spike sorting toolbox for up to thousands of electrodes validated with ground truth recordings in vitro and in vivo.

Elife. 2018-3-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索