Gaiser Olaf J, Piotukh Kirill, Ponnuswamy Mondikalipudur N, Planas Antoni, Borriss Rainer, Heinemann Udo
Forschungsgruppe Kristallographie, Max-Delbrück-Centrum für Molekulare Medizin, Robert-Rössle-Strasse 10, 13125 Berlin, Germany.
J Mol Biol. 2006 Apr 7;357(4):1211-25. doi: 10.1016/j.jmb.2006.01.014. Epub 2006 Jan 25.
Depolymerization of polysaccharides is catalyzed by highly specific enzymes that promote hydrolysis of the scissile glycosidic bond by an activated water molecule. 1,3-1,4-beta-Glucanases selectively cleave beta-1,4 glycosidic bonds in 3-O-substituted glucopyranosyl units within polysaccharides with mixed linkage. The reaction follows a double-displacement mechanism by which the configuration of the anomeric C(1)-atom of the glucosyl unit in subsite -I is retained. Here we report the high-resolution crystal structure of the hybrid 1,3-1,4-beta-glucanase H(A16-M)(E105Q/E109Q) in complex with a beta-glucan tetrasaccharide. The structure shows four beta-d-glucosyl moieties bound to the substrate-binding cleft covering subsites -IV to -I, thus corresponding to the reaction product. The ten active-site residues Asn26, Glu63, Arg65, Phe92, Tyr94, Glu105, Asp107, Glu109, Asn182 and Trp184 form a network of hydrogen bonds and hydrophobic stacking interactions with the substrate. These residues were previously identified by mutational analysis as significant for stabilization of the enzyme-carbohydrate complex, with Glu105 and Glu109 being the catalytic residues. Compared to the Michaelis complex model, the tetrasaccharide moiety is slightly shifted toward that part of the cleft binding the non-reducing end of the substrate, but shows previously unanticipated strong stacking interactions with Phe92 in subsite -I. A number of specific hydrogen-bond contacts between the enzyme and the equatorial O(2), O(3) and O(6) hydroxyl groups of the glucosyl residues in subsites -I, -II and -III are the structural basis for the observed substrate specificity of 1,3-1,4-beta-glucanases. Kinetic analysis of enzyme variants with the all beta-1,3 linked polysaccharide laminarin identified key residues mediating substrate specificity in good agreement with the structural data. The comparison with structures of the apo-enzyme H(A16-M) and a covalent enzyme-inhibitor (E.I) complex, together with kinetic and mutagenesis data, yields new insights into the structural requirements for substrate binding and catalysis. A detailed view of enzyme-carbohydrate interactions is presented and mechanistic implications are discussed.
多糖的解聚由高度特异性的酶催化,这些酶通过活化的水分子促进可裂解糖苷键的水解。1,3 - 1,4-β-葡聚糖酶选择性地切割具有混合连接的多糖中3 - O - 取代的吡喃葡萄糖基单元中的β-1,4糖苷键。该反应遵循双置换机制,通过该机制,亚位点-I中葡萄糖基单元的异头C(1)原子的构型得以保留。在此,我们报道了杂合1,3 - 1,4-β-葡聚糖酶H(A16 - M)(E105Q/E109Q)与β-葡聚糖四糖复合物的高分辨率晶体结构。该结构显示四个β - D - 葡萄糖基部分与覆盖亚位点-IV至-I的底物结合裂隙结合,因此对应于反应产物。十个活性位点残基Asn26、Glu63、Arg65、Phe92、Tyr94、Glu105、Asp107、Glu109、Asn182和Trp184与底物形成氢键和疏水堆积相互作用网络。这些残基先前通过突变分析被确定对酶 - 碳水化合物复合物的稳定具有重要意义,其中Glu105和Glu109是催化残基。与米氏复合物模型相比,四糖部分向裂隙中结合底物非还原端的部分略有移动,但在亚位点-I中与Phe92显示出先前未预料到的强堆积相互作用。酶与亚位点-I、-II和-III中葡萄糖基残基的赤道O(2)、O(3)和O(6)羟基之间的一些特定氢键接触是观察到的1,3 - 1,4-β-葡聚糖酶底物特异性的结构基础。对与全β-1,3连接的多糖海带多糖的酶变体的动力学分析确定了介导底物特异性的关键残基,与结构数据高度吻合。与脱辅基酶H(A16 - M)和共价酶 - 抑制剂(E.I)复合物的结构比较,以及动力学和诱变数据,为底物结合和催化的结构要求提供了新的见解。展示了酶 - 碳水化合物相互作用的详细视图并讨论了其机制意义。