School of Life Sciences, University of Dundee, Dundee, DD1 5EH, UK.
National Engineering Research Center for Non-Food Biorefinery, State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, 530007, Nanning, China.
Nat Commun. 2019 Apr 10;10(1):1669. doi: 10.1038/s41467-019-09674-0.
Fungal cell wall synthesis is achieved by a balance of glycosyltransferase, hydrolase and transglycosylase activities. Transglycosylases strengthen the cell wall by forming a rigid network of crosslinks through mechanisms that remain to be explored. Here we study the function of the Aspergillus fumigatus family of five Crh transglycosylases. Although crh genes are dispensable for cell viability, simultaneous deletion of all genes renders cells sensitive to cell wall interfering compounds. In vitro biochemical assays and localisation studies demonstrate that this family of enzymes functions redundantly as transglycosylases for both chitin-glucan and chitin-chitin cell wall crosslinks. To understand the molecular basis of this acceptor promiscuity, we solved the crystal structure of A. fumigatus Crh5 (AfCrh5) in complex with a chitooligosaccharide at the resolution of 2.8 Å, revealing an extensive elongated binding cleft for the donor (-4 to -1) substrate and a short acceptor (+1 to +2) binding site. Together with mutagenesis, the structure suggests a "hydrolysis product assisted" molecular mechanism favouring transglycosylation over hydrolysis.
真菌细胞壁的合成是通过糖基转移酶、水解酶和转糖基酶活性的平衡来实现的。转糖基酶通过尚未探索的机制形成刚性交联网络来增强细胞壁。在这里,我们研究了烟曲霉家族的五个 Crh 转糖基酶的功能。尽管 crh 基因对于细胞活力不是必需的,但同时删除所有基因会使细胞对细胞壁干扰化合物敏感。体外生化分析和定位研究表明,该酶家族作为几丁质-葡聚糖和几丁质-几丁质细胞壁交联的转糖基酶具有冗余功能。为了了解这种受体混杂的分子基础,我们解析了 2.8Å分辨率的烟曲霉 Crh5(AfCrh5)与壳寡糖复合物的晶体结构,揭示了一个用于供体(-4 至-1)底物的广泛延伸的结合裂隙和一个短的受体(+1 至+2)结合位点。与突变分析结合,该结构表明一种“水解产物辅助”的分子机制有利于转糖基化而不是水解。