Holgersson Jan, Löfling Jonas
Division of Clinical Immunology, Karolinska Institutet, Karolinska University Hospital, Huddinge, S-141 86 Stockholm, Sweden.
Glycobiology. 2006 Jul;16(7):584-93. doi: 10.1093/glycob/cwj090. Epub 2006 Feb 16.
Sialyl Lewis A (SLe(a)), Lewis A (Le(a)), and Lewis B (Le(b)) have been studied in many different biological contexts, for example in microbial adhesion and cancer. Their biosynthesis is complex and involves beta1,3-galactosyltransferases (beta3Gal-Ts) and a combined action of alpha2- and/or alpha4-fucosyltransferases (Fuc-Ts). Further, O-glycans with different core structures have been identified, and the ability of beta3Gal-Ts and Fuc-Ts to use these as substrates has not been resolved. Therefore, to examine the in vivo specificity of enzymes involved in SLe(a), Le(a), and Le(b) synthesis, we have transiently transfected CHO-K1 cells with relevant human glycosyltransferases and, on secreted reporter proteins, detected the resulting Lewis antigens on N- and O-linked glycans using western blotting and Le-specific antibodies. beta3Gal-T1, -T2, and -T5 could synthesize type 1 chains on N-linked glycans, but only beta3Gal-T5 worked on O-linked glycans. The latter enzyme could use both core 2 and core 3 precursor structures. Furthermore, the specificity of FUT5 and FUT3 in Le(a) and Le(b) synthesis was different, with FUT5 fucosylating H type 1 only on core 2, but FUT3 fucosylating H type 1 much more efficient on core 3 than on core 2. Finally, FUT1 and FUT2 were both found to direct alpha2-fucosylation on type 1 chains on both N- and O-linked structures. This knowledge enables us to engineer recombinant glycoproteins with glycan- and core chain-specific Lewis antigen substitution. Such tools will be important for investigations on the fine carbohydrate specificity of Le(b)-binding lectins, such as Helicobacter pylori adhesins and DC-SIGN, and may also prove useful as therapeutics.
唾液酸化路易斯A(SLe(a))、路易斯A(Le(a))和路易斯B(Le(b))已在许多不同的生物学背景下进行了研究,例如在微生物黏附和癌症方面。它们的生物合成过程复杂,涉及β1,3-半乳糖基转移酶(β3Gal-Ts)以及α2-和/或α4-岩藻糖基转移酶(Fuc-Ts)的联合作用。此外,已鉴定出具有不同核心结构的O-聚糖,而β3Gal-Ts和Fuc-Ts将这些作为底物的能力尚未明确。因此,为了研究参与SLe(a)、Le(a)和Le(b)合成的酶在体内的特异性,我们用相关的人糖基转移酶瞬时转染CHO-K1细胞,并在分泌的报告蛋白上,使用蛋白质免疫印迹法和Le特异性抗体检测N-和O-连接聚糖上产生的路易斯抗原。β3Gal-T1、-T2和-T5能够在N-连接聚糖上合成1型链,但只有β3Gal-T5作用于O-连接聚糖。后一种酶可以利用核心2和核心3前体结构。此外,FUT5和FUT3在Le(a)和Le(b)合成中的特异性不同,FUT5仅在核心2上对H1型进行岩藻糖基化,而FUT3在核心3上对H1型进行岩藻糖基化比对核心2上更有效。最后,发现FUT1和FUT2都能在N-和O-连接结构的1型链上引导α2-岩藻糖基化。这些知识使我们能够设计出具有聚糖和核心链特异性路易斯抗原替代的重组糖蛋白。这样的工具对于研究Le(b)结合凝集素(如幽门螺杆菌黏附素和DC-SIGN)的精细碳水化合物特异性的研究将很重要,并且也可能被证明可作为治疗药物有用。