Suppr超能文献

调强放射治疗优化中的迭代正则化

Iterative regularization in intensity-modulated radiation therapy optimization.

作者信息

Carlsson Fredrik, Forsgren Anders

机构信息

RaySearch Laboratories, Sveav. 25, SE-111 34 Stockholm, Sweden.

出版信息

Med Phys. 2006 Jan;33(1):225-34. doi: 10.1118/1.2148918.

Abstract

A common way to solve intensity-modulated radiation therapy (IMRT) optimization problems is to use a beamlet-based approach. The approach is usually employed in a three-step manner: first a beamlet-weight optimization problem is solved, then the fluence profiles are converted into step-and-shoot segments, and finally postoptimization of the segment weights is performed. A drawback of beamlet-based approaches is that beamlet-weight optimization problems are ill-conditioned and have to be regularized in order to produce smooth fluence profiles that are suitable for conversion. The purpose of this paper is twofold: first, to explain the suitability of solving beamlet-based IMRT problems by a BFGS quasi-Newton sequential quadratic programming method with diagonal initial Hessian estimate, and second, to empirically show that beamlet-weight optimization problems should be solved in relatively few iterations when using this optimization method. The explanation of the suitability is based on viewing the optimization method as an iterative regularization method. In iterative regularization, the optimization problem is solved approximately by iterating long enough to obtain a solution close to the optimal one, but terminating before too much noise occurs. Iterative regularization requires an optimization method that initially proceeds in smooth directions and makes rapid initial progress. Solving ten beamlet-based IMRT problems with dose-volume objectives and bounds on the beamlet-weights, we find that the considered optimization method fulfills the requirements for performing iterative regularization. After segment-weight optimization, the treatments obtained using 35 beamlet-weight iterations outperform the treatments obtained using 100 beamlet-weight iterations, both in terms of objective value and of target uniformity. We conclude that iterating too long may in fact deteriorate the quality of the deliverable plan.

摘要

解决调强放射治疗(IMRT)优化问题的一种常用方法是采用基于子野的方法。该方法通常按三步使用:首先解决子野权重优化问题,然后将注量分布转换为步进式射野分段,最后对子野分段权重进行优化后处理。基于子野的方法的一个缺点是子野权重优化问题是病态的,必须进行正则化处理,以生成适合转换的平滑注量分布。本文的目的有两个:第一,解释使用具有对角初始海森矩阵估计的BFGS拟牛顿序列二次规划方法解决基于子野的IMRT问题的适用性;第二,通过实验表明,使用这种优化方法时,子野权重优化问题应以相对较少的迭代次数来解决。对适用性的解释基于将优化方法视为一种迭代正则化方法。在迭代正则化中,通过足够长的迭代来近似解决优化问题,以获得接近最优解的解,但在产生过多噪声之前终止。迭代正则化需要一种优化方法,该方法最初在平滑方向上进行,并在初始阶段取得快速进展。通过求解十个具有剂量体积目标和子野权重边界的基于子野的IMRT问题,我们发现所考虑的优化方法满足执行迭代正则化的要求。在子野分段权重优化之后,使用35次子野权重迭代获得的治疗方案在目标值和靶区均匀性方面均优于使用100次子野权重迭代获得的治疗方案。我们得出结论,迭代时间过长实际上可能会降低可交付计划的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验