Süss P, Küfer K H, Thieke C
Department of Optimization Fraunhofer Institute for Industrial Mathematics Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany.
Phys Med Biol. 2007 Oct 7;52(19):6039-51. doi: 10.1088/0031-9155/52/19/022. Epub 2007 Sep 17.
In inverse planning for intensity-modulated radiotherapy (IMRT), the fluence distribution of each treatment beam is usually calculated in an optimization process. The delivery of the resulting treatment plan using multileaf collimators (MLCs) is performed either in the step-and-shoot or sliding window technique. For step-and-shoot delivery, the arbitrary beam fluence distributions have to be transformed into an applicable sequence of subsegments. In a stratification step the complexity of the fluence maps is reduced by assigning each beamlet to discrete intensity values, followed by the sequencing step that generates the subsegments. In this work, we concentrate on the stratification for step-and-shoot delivery. Different concepts of stratification are formally introduced. In addition to already used strategies that minimize the difference between original and stratified beam intensities, we propose an original stratification principle that minimizes the error of the resulting dose distribution. It could be shown that for a comparable total number of subsegments the dose-oriented stratification results in a better approximation of the original, unsequenced plan. The presented algorithm can replace the stratification routine in existing sequencer programs and can also be applied to interpolated plans that are generated in an interactive decision making process of multicriteria inverse planning programs.