Suppr超能文献

用于表征自动调节的脑血流动力学和颅内压信号的非线性分析

Nonlinear analysis of cerebral hemodynamic and intracranial pressure signals for characterization of autoregulation.

作者信息

Hu Xiao, Nenov Valeriy, Glenn Thomas C, Steiner Luzius A, Czosnyka Marek, Bergsneider Marvin, Martin Neil

机构信息

Brain Monitoring and Modeling Laboratory, Division of Neurosurgery, University of California, Los Angeles 90034, USA.

出版信息

IEEE Trans Biomed Eng. 2006 Feb;53(2):195-209. doi: 10.1109/TBME.2005.862546.

Abstract

The objective of this study was to determine whether or not the underlying physiological systems that generates spontaneous arterial blood pressure (ABP), cerebral blood flow velocity (CBFV), and intracranial pressure signals could be adequately approximated as a linear stochastic process. Furthermore, a new measure (C) capable of capturing the degree of nonlinear dependency between two ABP and CBFV signals (including a time-varying situation) was proposed for quantifying the degree of cerebral blood flow autoregulation. A surrogate data test of fifteen ABP, CBFV, and intracranial pressure (ICP) segments was conducted for detecting whether there exists a statistically significant deviation from the null hypothesis of linear signals. The extension of the established block computation method of C measure to an adaptive one was achieved. This new algorithm was then applied to study the C evolution using brain injury patients data from a hyperventilation study and two propofol studies. Nonlinearity has not been detected for all the fifteen recordings, neither has nonlinear dependency between CBFV and ABP. However, their presences in some of the signal segments justified the adoption of a nonlinear measure of dependency capable of characterizing both linear and nonlinear correlations for inferring autoregulation status. C measure started to decrease with the introduction of hypocapnia state indicating that hyperventilation may reduce the dependency of CBFV on ABP fluctuations. On the other hand, complex patterns of C measure evolution were observed among 14 cases of propofol data indicating a nontrivial effect of propofol on the dependency of CBFV on ABP.

摘要

本研究的目的是确定产生自发性动脉血压(ABP)、脑血流速度(CBFV)和颅内压信号的潜在生理系统是否可以充分近似为线性随机过程。此外,还提出了一种新的测量方法(C),能够捕捉两个ABP和CBFV信号之间的非线性依赖程度(包括随时间变化的情况),以量化脑血流自动调节的程度。对15个ABP、CBFV和颅内压(ICP)片段进行了替代数据测试,以检测是否存在与线性信号零假设的统计学显著偏差。实现了将已建立的C测量块计算方法扩展为自适应方法。然后将这种新算法应用于使用来自过度通气研究和两项丙泊酚研究的脑损伤患者数据来研究C的演变。在所有15个记录中均未检测到非线性,CBFV和ABP之间也未检测到非线性依赖。然而,它们在一些信号片段中的存在证明了采用一种能够表征线性和非线性相关性以推断自动调节状态的非线性依赖测量方法的合理性。随着低碳酸血症状态的引入,C测量开始下降,表明过度通气可能会降低CBFV对ABP波动的依赖性。另一方面,在14例丙泊酚数据中观察到C测量演变的复杂模式,表明丙泊酚对CBFV对ABP的依赖性有显著影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验