Suppr超能文献

近似熵的自适应计算及其在心率变异性与颅内压信号不规则性综合分析中的应用

Adaptive computation of approximate entropy and its application in integrative analysis of irregularity of heart rate variability and intracranial pressure signals.

作者信息

Hu Xiao, Miller Chad, Vespa Paul, Bergsneider Marvin

机构信息

Division of Neurosurgery, Geffen School of Medicine at University of California, Los Angeles, CA 90095, United States.

出版信息

Med Eng Phys. 2008 Jun;30(5):631-9. doi: 10.1016/j.medengphy.2007.07.002. Epub 2007 Aug 21.

Abstract

The present study introduces an adaptive calculation of approximate entropy (ApEn) by exploiting sample-by-sample construction and update of nearest neighborhoods in an n-dimensional space. The algorithm is first validated with a standard numerical test set. It is then applied to electrocardiogram R wave interval (RR) and beat-to-beat intracranial pressure signals recorded from 12 patients undergoing normal pressure hydrocephalus diagnosis. The ApEn time series are further processed using the causal coherence analysis to study the interaction between ICP and RR interval. Numerical validation demonstrates that the proposed algorithm reproduces the known time-varying patterns in the test set and better tracks abrupt signal changes. It is also demonstrated that occurrences of large-amplitude ICP oscillation are associated with decreased ICP ApEn and RR ApEn for all 12 patients. The causal coherence analysis of ApEn time series shows that coherence between RR ApEn and ICP ApEn, after mathematically decoupling RR effect on ICP, is enhanced for the oscillatory ICP state and so is the amplitude of transfer function between ICP and RR interval. However, no enhanced coherence is observed after mathematically decoupling ICP effect on RR interval. In conclusion, the adaptive ApEn algorithm can be used to track nonstationary signal characteristics. Furthermore, interactions between dynamic systems could be studied by using ApEn time series of the direct observations of systems.

摘要

本研究通过利用n维空间中逐个样本构建和更新最近邻域,引入了一种近似熵(ApEn)的自适应计算方法。该算法首先用标准数值测试集进行验证。然后将其应用于12例接受正常压力脑积水诊断患者记录的心电图R波间期(RR)和逐搏颅内压信号。ApEn时间序列进一步采用因果相干分析进行处理,以研究颅内压(ICP)与RR间期之间的相互作用。数值验证表明,所提出的算法能够重现测试集中已知的时变模式,并能更好地跟踪信号的突然变化。研究还表明,所有12例患者中,大幅度ICP振荡的发生与ICP ApEn和RR ApEn降低有关。ApEn时间序列的因果相干分析表明,在数学上消除RR对ICP的影响后,振荡ICP状态下RR ApEn与ICP ApEn之间的相干性增强,ICP与RR间期之间传递函数的幅度也增强。然而,在数学上消除ICP对RR间期的影响后,未观察到相干性增强。总之,自适应ApEn算法可用于跟踪非平稳信号特征。此外,通过使用系统直接观测的ApEn时间序列,可以研究动态系统之间的相互作用。

相似文献

2
Integrative analysis of intracranial pressure and R-R interval signals: a study of ICP B-wave using causal coherence.
Conf Proc IEEE Eng Med Biol Soc. 2006;2006:464-7. doi: 10.1109/IEMBS.2006.260755.
5
Approximate entropy: a regularity statistic for assessment of intracranial pressure.
Acta Neurochir Suppl. 2002;81:193-5. doi: 10.1007/978-3-7091-6738-0_50.
8
Comparative study of approximate entropy and sample entropy robustness to spikes.
Artif Intell Med. 2011 Oct;53(2):97-106. doi: 10.1016/j.artmed.2011.06.007. Epub 2011 Aug 10.
10
On the use of approximate entropy and sample entropy with centre of pressure time-series.
J Neuroeng Rehabil. 2018 Dec 12;15(1):116. doi: 10.1186/s12984-018-0465-9.

引用本文的文献

1
Permutation Entropy Analysis to Intracranial Hypertension from a Porcine Model.
Entropy (Basel). 2023 Jan 31;25(2):267. doi: 10.3390/e25020267.
2
Patient-adaptable intracranial pressure morphology analysis using a probabilistic model-based approach.
Physiol Meas. 2020 Nov 6;41(10):104003. doi: 10.1088/1361-6579/abbcbb.
4
Cerebral and neural regulation of cardiovascular activity during mental stress.
Biomed Eng Online. 2016 Dec 28;15(Suppl 2):160. doi: 10.1186/s12938-016-0255-1.
5
Exploiting Complexity Information for Brain Activation Detection.
PLoS One. 2016 Apr 5;11(4):e0152418. doi: 10.1371/journal.pone.0152418. eCollection 2016.
6
Analysis of heart rate control to assess thermal sensitivity responses in Brazilian toads.
Braz J Med Biol Res. 2015 Jan;48(1):46-50. doi: 10.1590/1414-431x20143875. Epub 2014 Oct 24.
7
A robust method for online heart sound localization in respiratory sound based on temporal fuzzy c-means.
Med Biol Eng Comput. 2015 Jan;53(1):45-56. doi: 10.1007/s11517-014-1210-6. Epub 2014 Oct 19.
8
Complexity of intracranial pressure correlates with outcome after traumatic brain injury.
Brain. 2012 Aug;135(Pt 8):2399-408. doi: 10.1093/brain/aws155. Epub 2012 Jun 25.
9
Intracranial hypertension prediction using extremely randomized decision trees.
Med Eng Phys. 2012 Oct;34(8):1058-65. doi: 10.1016/j.medengphy.2011.11.010. Epub 2012 Mar 7.
10
Research and technology in neurocritical care.
Neurocrit Care. 2012 Feb;16(1):42-54. doi: 10.1007/s12028-011-9609-5.

本文引用的文献

2
Interpretation of the Lempel-Ziv complexity measure in the context of biomedical signal analysis.
IEEE Trans Biomed Eng. 2006 Nov;53(11):2282-8. doi: 10.1109/TBME.2006.883696.
3
Reliability and accuracy of heart rate variability metrics versus ECG segment duration.
Med Biol Eng Comput. 2006 Sep;44(9):747-56. doi: 10.1007/s11517-006-0097-2. Epub 2006 Aug 22.
4
5
Complex analysis of intracranial hypertension using approximate entropy.
Crit Care Med. 2006 Jan;34(1):87-95. doi: 10.1097/01.ccm.0000190426.44782.f0.
7
Approximate entropy in the electroencephalogram during wake and sleep.
Clin EEG Neurosci. 2005 Jan;36(1):21-4. doi: 10.1177/155005940503600106.
8
Surrogate data analysis for assessing the significance of the coherence function.
IEEE Trans Biomed Eng. 2004 Jul;51(7):1156-66. doi: 10.1109/TBME.2004.827271.
10
Test your surrogate data before you test for nonlinearity.
Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics. 1999 Sep;60(3):2808-16. doi: 10.1103/physreve.60.2808.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验