Majumdar Satya N, Dasgupta Chandan
Laboratoire de Physique Theorique et Modeles Statistiques, Universite Paris-Sud, Bat. 100, 91405 ORSAY cedex, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2006 Jan;73(1 Pt 1):011602. doi: 10.1103/PhysRevE.73.011602. Epub 2006 Jan 9.
We report numerical and analytic results for the spatial survival probability for fluctuating one-dimensional interfaces with Edwards-Wilkinson or Kardar-Parisi-Zhang dynamics in the steady state. Our numerical results are obtained from analysis of steady-state profiles generated by integrating a spatially discretized form of the Edwards-Wilkinson equation to long times. We show that the survival probability exhibits scaling behavior in its dependence on the system size and the "sampling interval" used in the measurement for both "steady-state" and "finite" initial conditions. Analytic results for the scaling functions are obtained from a path-integral treatment of a formulation of the problem in terms of one-dimensional Brownian motion. A "deterministic approximation" is used to obtain closed-form expressions for survival probabilities from the formally exact analytic treatment. The resulting approximate analytic results provide a fairly good description of the numerical data.
我们报告了在稳态下具有爱德华兹 - 威尔金森或卡达尔 - 帕里西 - 张动力学的波动一维界面的空间生存概率的数值和解析结果。我们的数值结果是通过对爱德华兹 - 威尔金森方程的空间离散形式进行长时间积分生成的稳态分布进行分析得到的。我们表明,对于“稳态”和“有限”初始条件,生存概率在其对系统大小和测量中使用的“采样间隔”的依赖关系中呈现出标度行为。标度函数的解析结果是通过对以一维布朗运动表示的问题进行路径积分处理得到的。使用“确定性近似”从形式上精确的解析处理中获得生存概率的封闭形式表达式。所得的近似解析结果对数值数据提供了相当好的描述。