Klinner Julian, Lindholdt Malik, Nagorny Boris, Hemmerich Andreas
Institut für Laser-Physik, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany.
Phys Rev Lett. 2006 Jan 20;96(2):023002. doi: 10.1103/PhysRevLett.96.023002. Epub 2006 Jan 19.
A novel regime of atom-cavity physics is explored, arising when large atom samples dispersively interact with high-finesse optical cavities. A stable far-detuned optical lattice of several million rubidium atoms is formed inside an optical ring resonator by coupling equal amounts of laser light to each propagation direction of a longitudinal cavity mode. An adjacent longitudinal mode, detuned by about 3 GHz, is used to perform probe transmission spectroscopy of the system. The atom-cavity coupling for the lattice beams and the probe is dispersive and dissipation results only from the finite photon-storage time. The observation of two well-resolved normal modes demonstrates the regime of strong cooperative coupling. The details of the normal mode spectrum reveal mechanical effects associated with the retroaction of the probe upon the optical lattice.
探索了一种新的原子-腔物理机制,当大原子样本与高精细度光学腔发生色散相互作用时会出现这种机制。通过将等量激光耦合到纵向腔模的每个传播方向,在光学环形谐振器内形成了由数百万个铷原子组成的稳定远失谐光学晶格。利用一个失谐约3 GHz的相邻纵向模式对该系统进行探测透射光谱分析。晶格光束和探测器的原子-腔耦合是色散性的,耗散仅源于有限的光子存储时间。对两个分辨良好的正常模式的观测证明了强合作耦合机制。正常模式光谱的细节揭示了与探测器对光学晶格的反作用相关的力学效应。