Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany and Departament de Física, Universitat Autònoma de Barcelona, E-08193 Bellaterra, Spain.
Theoretische Physik, Universität des Saarlandes, D-66123 Saarbrücken, Germany.
Phys Rev Lett. 2013 Feb 15;110(7):075304. doi: 10.1103/PhysRevLett.110.075304. Epub 2013 Feb 12.
We determine the quantum ground-state properties of ultracold bosonic atoms interacting with the mode of a high-finesse resonator. The atoms are confined by an external optical lattice, whose period is incommensurate with the cavity mode wavelength, and are driven by a transverse laser, which is resonant with the cavity mode. While for pointlike atoms photon scattering into the cavity is suppressed, for sufficiently strong lasers quantum fluctuations can support the buildup of an intracavity field, which in turn amplifies quantum fluctuations. The dynamics is described by a Bose-Hubbard model where the coefficients due to the cavity field depend on the atomic density at all lattice sites. Quantum Monte Carlo simulations and mean-field calculations show that, for large parameter regions, cavity backaction forces the atoms into clusters with a checkerboard density distribution. Here, the ground state lacks superfluidity and possesses finite compressibility, typical of a Bose glass. This system constitutes a novel setting where quantum fluctuations give rise to effects usually associated with disorder.
我们确定了与高精细度谐振器模式相互作用的超冷玻色原子的量子基态性质。原子被外部光晶格限制,其周期与腔模波长不成整数倍,并且受到与腔模共振的横向激光的驱动。虽然对于点状原子,光子散射到腔中会被抑制,但对于足够强的激光,量子涨落可以支持腔内场的建立,从而放大量子涨落。动力学由玻色-哈伯德模型描述,其中由于腔场引起的系数取决于所有晶格位置的原子密度。量子蒙特卡罗模拟和平均场计算表明,对于大的参数区域,腔后效迫使原子形成具有棋盘状密度分布的团簇。在这里,基态缺乏超流性,并且具有有限的可压缩性,这是玻色玻璃的典型特征。这个系统构成了一个新的环境,其中量子涨落引起了通常与无序相关的效应。