Brandt Sebastian F, Dellen Babette K, Wessel Ralf
Department of Physics, Campus Box 1105, Washington University, St. Louis, Missouri 63130-4899, USA.
Phys Rev Lett. 2006 Jan 27;96(3):034104. doi: 10.1103/PhysRevLett.96.034104. Epub 2006 Jan 26.
The effects of disorder in external forces on the dynamical behavior of coupled nonlinear oscillator networks are studied. When driven synchronously, i.e., all driving forces have the same phase, the networks display chaotic dynamics. We show that random phases in the driving forces result in regular, periodic network behavior. Intermediate phase disorder can produce network synchrony. Specifically, there is an optimal amount of phase disorder, which can induce the highest level of synchrony. These results demonstrate that the spatiotemporal structure of external influences can control chaos and lead to synchronization in nonlinear systems.
研究了外力无序对耦合非线性振子网络动力学行为的影响。当同步驱动时,即所有驱动力具有相同相位时,网络呈现混沌动力学。我们表明,驱动力中的随机相位会导致规则的周期性网络行为。中间相位无序可以产生网络同步。具体而言,存在一个最佳的相位无序量,它可以诱导最高水平的同步。这些结果表明,外部影响的时空结构可以控制混沌并导致非线性系统中的同步。