Suppr超能文献

伯克霍尔德氏菌属C3对菲的降解:萘-1,2-二醇的初始1,2-和3,4-双加氧作用以及间位和邻位裂解

Degradation of phenanthrene by Burkholderia sp. C3: initial 1,2- and 3,4-dioxygenation and meta- and ortho-cleavage of naphthalene-1,2-diol.

作者信息

Seo Jong-Su, Keum Young-Soo, Hu Yuting, Lee Sung-Eun, Li Qing X

机构信息

Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA.

出版信息

Biodegradation. 2007 Feb;18(1):123-31. doi: 10.1007/s10532-006-9048-8. Epub 2006 Feb 21.

Abstract

Burkholderia sp. C3 was isolated from a polycyclic aromatic hydrocarbon (PAH)-contaminated site in Hilo, Hawaii, USA, and studied for its degradation of phenanthrene as a sole carbon source. The initial 3,4-C dioxygenation was faster than 1,2-C dioxygenation in the first 3-day culture. However, 1-hydroxy-2-naphthoic acid derived from 3,4-C dioxygenation degraded much slower than 2-hydroxy-1-naphthoic acid derived from 1,2-C dioxygenation. Slow degradation of 1-hydroxy-2-naphthoic acid relative to 2-hydroxy-1-naphthoic acid may trigger 1,2-C dioxygenation faster after 3 days of culture. High concentrations of 5,6- and 7,8-benzocoumarins indicated that meta-cleavage was the major degradation mechanism of phenanthrene-1,2- and -3,4-diols. Separate cultures with 2-hydroxy-1-naphthoic acid and 1-hydroxy-2-naphthoic acid showed that the degradation rate of the former to naphthalene-1,2-diol was much faster than that of the latter. The two upper metabolic pathways of phenanthrene are converged into naphthalene-1,2-diol that is further metabolized to 2-carboxycinnamic acid and 2-hydroxybenzalpyruvic acid by ortho- and meta-cleavages, respectively. Transformation of naphthalene-1,2-diol to 2-carboxycinnamic acid by this strain represents the first observation of ortho-cleavage of two rings-PAH-diols by a Gram-negative species.

摘要

伯克霍尔德氏菌属菌株C3是从美国夏威夷希洛一个受多环芳烃(PAH)污染的地点分离出来的,并对其以菲作为唯一碳源的降解情况进行了研究。在最初3天的培养中,3,4-C双加氧作用比1,2-C双加氧作用更快。然而,由3,4-C双加氧作用产生的1-羟基-2-萘甲酸的降解速度比由1,2-C双加氧作用产生的2-羟基-1-萘甲酸慢得多。相对于2-羟基-1-萘甲酸,1-羟基-2-萘甲酸的缓慢降解可能会在培养3天后更快地触发1,2-C双加氧作用。高浓度的5,6-和7,8-苯并香豆素表明间位裂解是菲-1,2-二醇和-3,4-二醇的主要降解机制。用2-羟基-1-萘甲酸和1-羟基-2-萘甲酸进行的单独培养表明,前者降解为萘-1,2-二醇的速率比后者快得多。菲的两条上游代谢途径汇聚到萘-1,2-二醇,萘-1,2-二醇再分别通过邻位和间位裂解进一步代谢为2-羧基肉桂酸和2-羟基苯甲酰丙酮酸。该菌株将萘-1,2-二醇转化为2-羧基肉桂酸,这是革兰氏阴性菌对双环多环芳烃二醇进行邻位裂解的首次观察。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验