Mason Sara E, Grinberg Ilya, Rappe Andrew M
The Makineni Theoretical Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
J Phys Chem B. 2006 Mar 2;110(8):3816-22. doi: 10.1021/jp0548669.
We use density functional theory (DFT) with the generalized gradient approximation (GGA) and our first-principles extrapolation method for accurate chemisorption energies (Mason et al. Phys. Rev. B 2004, 69, 161401R) to calculate the chemisorption energy for CO on a variety of transition metal surfaces for various adsorbate densities and patterns. We identify adsorbate through-space repulsion, bonding competition, and substrate-mediated electron delocalization as key factors determining the preferred chemisorption patterns for different metal surfaces and adsorbate coverages. We discuss how the balance of these interactions, along with the inherent adsorption site preference on each metal surface, can explain the observed CO adsorbate patterns at different coverages.
我们使用密度泛函理论(DFT)结合广义梯度近似(GGA)以及我们用于精确化学吸附能的第一性原理外推方法(Mason等人,《物理评论B》2004年,69卷,161401R),来计算在各种吸附质密度和模式下,CO在多种过渡金属表面上的化学吸附能。我们确定吸附质的空间排斥、键合竞争以及基底介导的电子离域是决定不同金属表面和吸附质覆盖度下优先化学吸附模式的关键因素。我们讨论了这些相互作用的平衡,以及每个金属表面固有的吸附位点偏好,如何能够解释在不同覆盖度下观察到的CO吸附质模式。