Suppr超能文献

类增量广义判别分析

Class-incremental generalized discriminant analysis.

作者信息

Zheng Wenming

机构信息

Research Center for Learning Science, Southeast University, Nanjing, Jiangsu 210096, China.

出版信息

Neural Comput. 2006 Apr;18(4):979-1006. doi: 10.1162/089976606775774633.

Abstract

Generalized discriminant analysis (GDA) is the nonlinear extension of the classical linear discriminant analysis (LDA) via the kernel trick. Mathematically, GDA aims to solve a generalized eigenequation problem, which is always implemented by the use of singular value decomposition (SVD) in the previously proposed GDA algorithms. A major drawback of SVD, however, is the difficulty of designing an incremental solution for the eigenvalue problem. Moreover, there are still numerical problems of computing the eigenvalue problem of large matrices. In this article, we propose another algorithm for solving GDA as for the case of small sample size problem, which applies QR decomposition rather than SVD. A major contribution of the proposed algorithm is that it can incrementally update the discriminant vectors when new classes are inserted into the training set. The other major contribution of this article is the presentation of the modified kernel Gram-Schmidt (MKGS) orthogonalization algorithm for implementing the QR decomposition in the feature space, which is more numerically stable than the kernel Gram-Schmidt (KGS) algorithm. We conduct experiments on both simulated and real data to demonstrate the better performance of the proposed methods.

摘要

广义判别分析(GDA)是通过核技巧对经典线性判别分析(LDA)的非线性扩展。在数学上,GDA旨在解决一个广义特征方程问题,在先前提出的GDA算法中,该问题总是通过奇异值分解(SVD)来实现。然而,SVD的一个主要缺点是难以设计特征值问题的增量解。此外,在计算大矩阵的特征值问题时仍然存在数值问题。在本文中,针对小样本规模问题的情况,我们提出了另一种求解GDA的算法,该算法应用QR分解而非SVD。所提算法的一个主要贡献在于,当新类别插入训练集时,它能够增量更新判别向量。本文的另一个主要贡献是提出了用于在特征空间中实现QR分解的修正核Gram - Schmidt(MKGS)正交化算法,该算法在数值上比核Gram - Schmidt(KGS)算法更稳定。我们在模拟数据和真实数据上都进行了实验,以证明所提方法具有更好的性能。

相似文献

1
Class-incremental generalized discriminant analysis.类增量广义判别分析
Neural Comput. 2006 Apr;18(4):979-1006. doi: 10.1162/089976606775774633.
2
3
Generalized discriminant analysis: a matrix exponential approach.广义判别分析:一种矩阵指数方法。
IEEE Trans Syst Man Cybern B Cybern. 2010 Feb;40(1):186-97. doi: 10.1109/TSMCB.2009.2024759. Epub 2009 Jul 31.
5
Incremental linear discriminant analysis for face recognition.用于人脸识别的增量线性判别分析。
IEEE Trans Syst Man Cybern B Cybern. 2008 Feb;38(1):210-21. doi: 10.1109/TSMCB.2007.908870.
8
Incremental Linear Discriminant Analysis: A Fast Algorithm and Comparisons.增量线性判别分析:一种快速算法及比较。
IEEE Trans Neural Netw Learn Syst. 2015 Nov;26(11):2716-35. doi: 10.1109/TNNLS.2015.2391201. Epub 2015 Jan 29.
10
Kernel discriminant analysis for positive definite and indefinite kernels.用于正定和不定核的核判别分析。
IEEE Trans Pattern Anal Mach Intell. 2009 Jun;31(6):1017-32. doi: 10.1109/TPAMI.2008.290.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验