Sevier Carolyn S, Kaiser Chris A
Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Mol Biol Cell. 2006 May;17(5):2256-66. doi: 10.1091/mbc.e05-05-0417. Epub 2006 Feb 22.
The membrane-associated flavoprotein Ero1p promotes disulfide bond formation in the endoplasmic reticulum (ER) by selectively oxidizing the soluble oxidoreductase protein disulfide isomerase (Pdi1p), which in turn can directly oxidize secretory proteins. Two redox-active disulfide bonds are essential for Ero1p oxidase activity: Cys100-Cys105 and Cys352-Cys355. Genetic and structural data indicate a disulfide bond is transferred from Cys100-Cys105 directly to Pdi1p, whereas a Cys352-Cys355 disulfide bond is used to reoxidize the reduced Cys100-Cys105 pair through an internal thiol-transfer reaction. Electron transfer from Cys352-Cys355 to molecular oxygen, by way of a flavin cofactor, maintains Cys352-Cys355 in an oxidized form. Herein, we identify a mixed disulfide species that confirms the Ero1p intercysteine thiol-transfer relay in vivo and identify Cys105 and Cys352 as the cysteines that mediate thiol-disulfide exchange. Moreover, we describe Ero1p mutants that have the surprising ability to oxidize substrates in the absence of Cys100-Cys105. We show the oxidase activity of these mutants results from structural changes in Ero1p that allow substrates increased access to Cys352-Cys355, which are normally buried beneath the protein surface. The altered activity of these Ero1p mutants toward selected substrates leads us to propose the catalytic mechanism involving transfer between cysteine pairs evolved to impart substrate specificity to Ero1p.
膜相关黄素蛋白Ero1p通过选择性氧化可溶性氧化还原酶蛋白二硫键异构酶(Pdi1p)来促进内质网(ER)中二硫键的形成,而Pdi1p又能直接氧化分泌蛋白。两个具有氧化还原活性的二硫键对Ero1p氧化酶活性至关重要:Cys100-Cys105和Cys352-Cys355。遗传和结构数据表明,一个二硫键从Cys100-Cys105直接转移到Pdi1p,而Cys352-Cys355二硫键则通过内部硫醇转移反应用于重新氧化还原的Cys100-Cys105对。通过黄素辅因子,从Cys352-Cys355到分子氧的电子转移使Cys352-Cys355保持氧化形式。在此,我们鉴定出一种混合二硫键物种,它证实了Ero1p半胱氨酸间硫醇转移中继在体内的存在,并确定Cys105和Cys352是介导硫醇-二硫键交换的半胱氨酸。此外,我们描述了Ero1p突变体,它们在没有Cys100-Cys105的情况下具有氧化底物的惊人能力。我们表明,这些突变体的氧化酶活性源于Ero1p的结构变化,使底物能够增加与通常埋在蛋白质表面之下的Cys352-Cys355的接触。这些Ero1p突变体对选定底物的活性改变使我们提出了涉及半胱氨酸对之间转移的催化机制,该机制的进化是为了赋予Ero1p底物特异性。