Monaco Caterina, Talà Adelfia, Spinosa Maria Rita, Progida Cinzia, De Nitto Eleanna, Gaballo Antonio, Bruni Carmelo B, Bucci Cecilia, Alifano Pietro
Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università di Lecce, Via Monteroni, 73100 Lecce, Italy.
Infect Immun. 2006 Mar;74(3):1725-40. doi: 10.1128/IAI.74.3.1725-1740.2006.
GdhR is a meningococcal transcriptional regulator that was previously shown to positively control the expression of gdhA, encoding the NADP-specific L-glutamate dehydrogenase (NADP-GDH), in response to the growth phase and/or to the carbon source. In this study we used reverse transcriptase-PCR-differential display (to identify additional GdhR-regulated genes. The results indicated that GdhR, in addition to NADP-GDH, controls the expression of a number of genes involved in glucose catabolism by the Entner-Doudoroff pathway and in l-glutamate import by an unknown ABC transport system. The genes encoding the putative periplasmic substrate-binding protein (NMB1963) and the permease (NMB1965) of the ABC transporter were genetically inactivated. Uptake experiments demonstrated an impairment of L-glutamate import in the NMB1965-defective mutant in the absence or in the presence of a low sodium ion concentration. In contrast, at a sodium ion concentration above 60 mM, the uptake defect disappeared, possibly because the activity of a sodium-driven secondary transporter became predominant. Indeed, the NMB1965-defective mutant was unable to grow at a low sodium ion concentration (<20 mM) in a chemically defined medium containing L-glutamate and four other amino acids that supported meningococcal growth, but it grew when the sodium ion concentration was raised to higher values (>60 mM). The same growth phenotype was observed in the NMB1963-defective mutant. Cell invasion and intracellular persistence assays and expression data during cell invasion provided evidence that the l-glutamate ABC transporter, tentatively named GltT, was critical for meningococcal adaptation in the low-sodium intracellular environment.
GdhR是一种脑膜炎球菌转录调节因子,先前研究表明,它可响应生长阶段和/或碳源,正向调控编码NADP特异性L-谷氨酸脱氢酶(NADP-GDH)的gdhA的表达。在本研究中,我们使用逆转录酶-PCR差异显示技术来鉴定其他受GdhR调控的基因。结果表明,除了NADP-GDH外,GdhR还控制许多参与通过Entner-Doudoroff途径进行葡萄糖分解代谢以及通过未知ABC转运系统进行L-谷氨酸转运的基因的表达。对编码ABC转运体假定周质底物结合蛋白(NMB1963)和通透酶(NMB1965)的基因进行了基因失活。摄取实验表明,在不存在或存在低钠离子浓度的情况下,NMB1965缺陷型突变体的L-谷氨酸摄取受损。相反,在钠离子浓度高于60 mM时,摄取缺陷消失,这可能是因为钠驱动的次级转运体的活性占主导地位。事实上,NMB1965缺陷型突变体在含有L-谷氨酸和其他四种支持脑膜炎球菌生长的氨基酸的化学限定培养基中,在低钠离子浓度(<20 mM)下无法生长,但当钠离子浓度升高到更高值(>60 mM)时它能够生长。在NMB1963缺陷型突变体中也观察到了相同的生长表型。细胞侵袭和细胞内持续存在试验以及细胞侵袭过程中的表达数据提供了证据,表明暂定名为GltT的L-谷氨酸ABC转运体对于脑膜炎球菌在低钠细胞内环境中的适应至关重要。