Suppr超能文献

利用水平集技术重建光学层析成像中的吸收和扩散形状轮廓。

Reconstructing absorption and diffusion shape profiles in optical tomography by a level set technique.

作者信息

Schweiger M, Arridge S R, Dorn O, Zacharopoulos A, Kolehmainen V

机构信息

Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK.

出版信息

Opt Lett. 2006 Feb 15;31(4):471-3. doi: 10.1364/ol.31.000471.

Abstract

A shape reconstruction algorithm for optical tomography is introduced that uses a level-set formulation for the shapes. Evolution laws based on gradient directions for a cost functional are derived for two different level-set functions, one describing the absorption and one the diffusion parameter, as well as for the parameter values inside these shapes. Numerical experiments are presented in 2D that show that the new method is able to simultaneously recover shapes and contrast values of absorbing and scattering objects embedded in a moderately heterogeneous background medium from simulated noisy data.

摘要

介绍了一种用于光学层析成像的形状重建算法,该算法对形状采用水平集公式。针对两个不同的水平集函数(一个描述吸收,另一个描述扩散参数)以及这些形状内部的参数值,推导了基于代价泛函梯度方向的演化定律。给出了二维数值实验,结果表明新方法能够从模拟噪声数据中同时恢复嵌入中等非均匀背景介质中的吸收和散射物体的形状及对比度值。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验