Schweiger M, Arridge S R, Dorn O, Zacharopoulos A, Kolehmainen V
Department of Computer Science, University College London, Gower Street, London WC1E 6BT, UK.
Opt Lett. 2006 Feb 15;31(4):471-3. doi: 10.1364/ol.31.000471.
A shape reconstruction algorithm for optical tomography is introduced that uses a level-set formulation for the shapes. Evolution laws based on gradient directions for a cost functional are derived for two different level-set functions, one describing the absorption and one the diffusion parameter, as well as for the parameter values inside these shapes. Numerical experiments are presented in 2D that show that the new method is able to simultaneously recover shapes and contrast values of absorbing and scattering objects embedded in a moderately heterogeneous background medium from simulated noisy data.
介绍了一种用于光学层析成像的形状重建算法,该算法对形状采用水平集公式。针对两个不同的水平集函数(一个描述吸收,另一个描述扩散参数)以及这些形状内部的参数值,推导了基于代价泛函梯度方向的演化定律。给出了二维数值实验,结果表明新方法能够从模拟噪声数据中同时恢复嵌入中等非均匀背景介质中的吸收和散射物体的形状及对比度值。