Suppr超能文献

用于光学层析成像中图像重建的动态自适应网格细化技术

Dynamically adaptive mesh refinement technique for image reconstruction in optical tomography.

作者信息

Soloviev Vadim Y, Krasnosselskaia Lada V

机构信息

Southwest Research Institute, San Antonio, TX 78228, USA.

出版信息

Appl Opt. 2006 Apr 20;45(12):2828-37. doi: 10.1364/ao.45.002828.

Abstract

A novel adaptive mesh technique is introduced for problems of image reconstruction in luminescence optical tomography. A dynamical adaptation of the three-dimensional scheme based on the finite-volume formulation reduces computational time and balances the ill-posed nature of the inverse problem. The arbitrary shape of the bounding surface is handled by an additional refinement of computational cells on the boundary. Dynamical shrinking of the search volume is introduced to improve computational performance and accuracy while locating the luminescence target. Light propagation in the medium is modeled by the telegraph equation, and the image-reconstruction algorithm is derived from the Fredholm integral equation of the first kind. Stability and computational efficiency of the introduced method are demonstrated for image reconstruction of one and two spherical luminescent objects embedded within a breastlike tissue phantom. Experimental measurements are simulated by the solution of the forward problem on a grid of 5x5 light guides attached to the surface of the phantom.

摘要

针对发光光学断层成像中的图像重建问题,引入了一种新型自适应网格技术。基于有限体积公式的三维方案的动态自适应减少了计算时间,并平衡了反问题的不适定性。通过对边界上的计算单元进行额外细化来处理边界曲面的任意形状。引入搜索体积的动态收缩,以在定位发光目标时提高计算性能和精度。介质中的光传播由电报方程建模,图像重建算法从第一类弗雷德霍姆积分方程导出。对于嵌入在乳腺样组织模型中的一个和两个球形发光物体的图像重建,证明了所引入方法的稳定性和计算效率。通过在附着于模型表面的5×5光导网格上求解正向问题来模拟实验测量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验