Suppr超能文献

叶绿体、线粒体和核DNA标记揭示了厄瓜多尔南部番木瓜科瓦斯孔塞利亚属物种间自然杂交和基因渐渗的证据。

Evidence of natural hybridization and introgression between Vasconcellea species (Caricaceae) from southern Ecuador revealed by chloroplast, mitochondrial and nuclear DNA markers.

作者信息

Van Droogenbroeck B, Kyndt T, Romeijn-Peeters E, Van Thuyne W, Goetghebeur P, Romero-motochi J P, Gheysen G

机构信息

Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University (UGent), Coupure links 653, B-9000 Ghent, Belgium.

出版信息

Ann Bot. 2006 May;97(5):793-805. doi: 10.1093/aob/mcl038. Epub 2006 Feb 24.

Abstract

BACKGROUND AND AIMS

Vasconcellea x heilbornii is believed to be of natural hybrid origin between V. cundinamarcensis and V. stipulata, and is often difficult to discriminate from V. stipulata on morphological grounds. The aim of this paper is to examine individuals of these three taxa and of individuals from the closely related species V. parviflora and V. weberbaueri, which all inhabit a hybrid zone in southern Ecuador.

METHODS

Molecular data from mitochondrial, chloroplast and nuclear DNA from 61 individuals were analysed.

KEY RESULTS

Molecular analysis confirmed occasional contemporary hybridization between V. stipulata, V. cundinamarcensis and V. x heilbornii and suggested the possible involvement of V. weberbaueri in the origin of V. x heilbornii. In addition, the molecular data indicated unidirectional introgression of the V. cundinamarcensis nuclear genome into that of V. stipulata. Several of the individuals examined with morphology similar to that of V. stipulata had genetic traces of hybridization with V. cundinamarcensis, which only seems to act as pollen donor in interspecific hybridization events. Molecular analyses also strongly suggested that most of the V. x heilbornii individuals are not F(1) hybrids but instead are progeny of repeated backcrosses with V. stipulata.

CONCLUSIONS

The results of the present study point to the need for re-evaluation of natural populations of V. stipulata and V. x heilbornii. In general, this analysis demonstrates the complex patterns of genetic and morphological diversity found in natural plant hybrid zones.

摘要

背景与目的

人们认为油瓜属(Vasconcellea)的希氏油瓜(Vasconcellea x heilbornii)是昆迪纳马卡油瓜(V. cundinamarcensis)和具托叶油瓜(V. stipulata)的天然杂交种,并且通常在形态学上难以将其与具托叶油瓜区分开来。本文的目的是研究这三个分类群的个体以及来自密切相关物种小花油瓜(V. parviflora)和韦氏油瓜(V. weberbaueri)的个体,所有这些物种都栖息在厄瓜多尔南部的一个杂交区域。

方法

分析了61个个体的线粒体、叶绿体和核DNA的分子数据。

主要结果

分子分析证实了具托叶油瓜、昆迪纳马卡油瓜和希氏油瓜之间偶尔存在当代杂交现象,并表明韦氏油瓜可能参与了希氏油瓜的起源。此外,分子数据表明昆迪纳马卡油瓜的核基因组单向渗入到具托叶油瓜的核基因组中。一些形态与具托叶油瓜相似的被检测个体具有与昆迪纳马卡油瓜杂交的遗传痕迹,在种间杂交事件中,昆迪纳马卡油瓜似乎仅作为花粉供体。分子分析还强烈表明,大多数希氏油瓜个体不是F(1)杂种,而是与具托叶油瓜反复回交的后代。

结论

本研究结果表明需要重新评估具托叶油瓜和希氏油瓜的自然种群。总体而言,该分析揭示了天然植物杂交区域中发现的复杂的遗传和形态多样性模式。

相似文献

2
Phylogenetic analysis of the highland papayas ( Vasconcellea) and allied genera (Caricaceae) using PCR-RFLP.
Theor Appl Genet. 2004 May;108(8):1473-86. doi: 10.1007/s00122-003-1575-7. Epub 2004 Jan 30.
3
Molecular phylogeny and evolution of Caricaceae based on rDNA internal transcribed spacers and chloroplast sequence data.
Mol Phylogenet Evol. 2005 Nov;37(2):442-59. doi: 10.1016/j.ympev.2005.06.017. Epub 2005 Aug 10.
6
Development of a codominant CAPS marker linked to PRSV-P resistance in highland papaya.
Theor Appl Genet. 2006 Oct;113(6):1159-69. doi: 10.1007/s00122-006-0375-2. Epub 2006 Aug 24.
7
Comparative analysis of chloroplast genomes in Vasconcellea pubescens A.DC. and Carica papaya L.
Sci Rep. 2020 Sep 25;10(1):15799. doi: 10.1038/s41598-020-72769-y.
8
AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador.
Theor Appl Genet. 2002 Aug;105(2-3):289-297. doi: 10.1007/s00122-002-0983-4. Epub 2002 Jun 21.
9
The origin of the non-recombining region of sex chromosomes in Carica and Vasconcellea.
Plant J. 2010 Sep;63(5):801-10. doi: 10.1111/j.1365-313X.2010.04284.x.
10

引用本文的文献

1
The Virome of Babaco () Expands to Include New Members of the and .
Viruses. 2023 Jun 16;15(6):1380. doi: 10.3390/v15061380.
2
Comparative and phylogenetic analyses of the chloroplast genome reveal the taxonomy of the genus.
Front Plant Sci. 2022 Nov 24;13:1047592. doi: 10.3389/fpls.2022.1047592. eCollection 2022.
3
An integrative approach reveals five new species of highland papayas (Caricaceae, Vasconcellea) from northern Peru.
PLoS One. 2020 Dec 10;15(12):e0242469. doi: 10.1371/journal.pone.0242469. eCollection 2020.
6
Extreme multiple reticulate origins of the Pteris cadieri complex (Pteridaceae).
Int J Mol Sci. 2012;13(4):4523-4544. doi: 10.3390/ijms13044523. Epub 2012 Apr 10.

本文引用的文献

1
Plant hybridization.
New Phytol. 1998 Dec;140(4):599-624. doi: 10.1046/j.1469-8137.1998.00315.x.
2
HYBRIDIZATION AS A DISPERSAL MECHANISM.
Evolution. 1988 Nov;42(6):1245-1255. doi: 10.1111/j.1558-5646.1988.tb04184.x.
5
Are natural hybrids fit or unfit relative to their parents?
Trends Ecol Evol. 1995 Feb;10(2):67-71. doi: 10.1016/S0169-5347(00)88979-X.
6
Hybridization and adaptive radiation.
Trends Ecol Evol. 2004 Apr;19(4):198-207. doi: 10.1016/j.tree.2004.01.003.
7
Molecular phylogeny and evolution of Caricaceae based on rDNA internal transcribed spacers and chloroplast sequence data.
Mol Phylogenet Evol. 2005 Nov;37(2):442-59. doi: 10.1016/j.ympev.2005.06.017. Epub 2005 Aug 10.
8
Phylogenetic analysis of the highland papayas ( Vasconcellea) and allied genera (Caricaceae) using PCR-RFLP.
Theor Appl Genet. 2004 May;108(8):1473-86. doi: 10.1007/s00122-003-1575-7. Epub 2004 Jan 30.
9
AFLP analysis of genetic relationships among papaya and its wild relatives (Caricaceae) from Ecuador.
Theor Appl Genet. 2002 Aug;105(2-3):289-297. doi: 10.1007/s00122-002-0983-4. Epub 2002 Jun 21.
10
Uniparental inheritance of mitochondrial and chloroplast genes: mechanisms and evolution.
Proc Natl Acad Sci U S A. 1995 Dec 5;92(25):11331-8. doi: 10.1073/pnas.92.25.11331.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验