Suppr超能文献

单个活应力纤维的粘弹性回缩及其对细胞形状、细胞骨架组织和细胞外基质力学的影响。

Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics.

作者信息

Kumar Sanjay, Maxwell Iva Z, Heisterkamp Alexander, Polte Thomas R, Lele Tanmay P, Salanga Matthew, Mazur Eric, Ingber Donald E

机构信息

Vascular Biology Program, Department of Pathology, Children's Hospital and Harvard Medical School, Boston, Massachusetts 02115-5737, USA.

出版信息

Biophys J. 2006 May 15;90(10):3762-73. doi: 10.1529/biophysj.105.071506. Epub 2006 Feb 24.

Abstract

Cells change their form and function by assembling actin stress fibers at their base and exerting traction forces on their extracellular matrix (ECM) adhesions. Individual stress fibers are thought to be actively tensed by the action of actomyosin motors and to function as elastic cables that structurally reinforce the basal portion of the cytoskeleton; however, these principles have not been directly tested in living cells, and their significance for overall cell shape control is poorly understood. Here we combine a laser nanoscissor, traction force microscopy, and fluorescence photobleaching methods to confirm that stress fibers in living cells behave as viscoelastic cables that are tensed through the action of actomyosin motors, to quantify their retraction kinetics in situ, and to explore their contribution to overall mechanical stability of the cell and interconnected ECM. These studies reveal that viscoelastic recoil of individual stress fibers after laser severing is partially slowed by inhibition of Rho-associated kinase and virtually abolished by direct inhibition of myosin light chain kinase. Importantly, cells cultured on stiff ECM substrates can tolerate disruption of multiple stress fibers with negligible overall change in cell shape, whereas disruption of a single stress fiber in cells anchored to compliant ECM substrates compromises the entire cellular force balance, induces cytoskeletal rearrangements, and produces ECM retraction many microns away from the site of incision; this results in large-scale changes of cell shape (> 5% elongation). In addition to revealing fundamental insight into the mechanical properties and cell shape contributions of individual stress fibers and confirming that the ECM is effectively a physical extension of the cell and cytoskeleton, the technologies described here offer a novel approach to spatially map the cytoskeletal mechanics of living cells on the nanoscale.

摘要

细胞通过在其基部组装肌动蛋白应力纤维并在细胞外基质(ECM)黏附处施加牵引力来改变其形态和功能。单个应力纤维被认为是通过肌动球蛋白马达的作用而被主动拉紧,并作为弹性缆绳发挥作用,在结构上加强细胞骨架的基部;然而,这些原理尚未在活细胞中得到直接验证,而且它们对整体细胞形状控制的意义也知之甚少。在这里,我们结合激光纳米剪刀、牵引力显微镜和荧光光漂白方法,以证实活细胞中的应力纤维表现为黏弹性缆绳,通过肌动球蛋白马达的作用而被拉紧,对其原位回缩动力学进行量化,并探索它们对细胞和相互连接的ECM整体机械稳定性的贡献。这些研究表明,激光切断后单个应力纤维的黏弹性回缩在受到Rho相关激酶抑制时会部分减慢,而在直接抑制肌球蛋白轻链激酶时几乎完全消除。重要的是,在坚硬的ECM底物上培养的细胞能够耐受多条应力纤维的破坏,细胞形状的总体变化可以忽略不计,而在附着于柔软ECM底物的细胞中,单个应力纤维的破坏会破坏整个细胞的力平衡,诱导细胞骨架重排,并在距切口许多微米处产生ECM回缩;这会导致细胞形状的大规模变化(伸长>5%)。除了揭示对单个应力纤维的机械特性和细胞形状贡献的基本见解,并确认ECM实际上是细胞和细胞骨架的物理延伸外,这里描述的技术还提供了一种在纳米尺度上对活细胞的细胞骨架力学进行空间映射的新方法。

相似文献

2
The mechanochemistry of cytoskeletal force generation.
Biomech Model Mechanobiol. 2015 Jan;14(1):59-72. doi: 10.1007/s10237-014-0588-2. Epub 2014 May 6.
3
Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery.
Biophys J. 2010 Nov 3;99(9):2775-83. doi: 10.1016/j.bpj.2010.08.071.
4
Control of cytoskeletal mechanics by extracellular matrix, cell shape, and mechanical tension.
Biophys J. 1994 Jun;66(6):2181-9. doi: 10.1016/S0006-3495(94)81014-8.
5
A multi-modular tensegrity model of an actin stress fiber.
J Biomech. 2008 Aug 7;41(11):2379-87. doi: 10.1016/j.jbiomech.2008.05.026. Epub 2008 Jul 15.
6
Characterization of the nuclear deformation caused by changes in endothelial cell shape.
J Biomech Eng. 2004 Oct;126(5):552-8. doi: 10.1115/1.1800559.
7
Actomyosin stress fiber subtypes have unique viscoelastic properties and roles in tension generation.
Mol Biol Cell. 2018 Aug 8;29(16):1992-2004. doi: 10.1091/mbc.E18-02-0106. Epub 2018 Jun 21.
8
Stress fluctuations and motion of cytoskeletal-bound markers.
Phys Rev E Stat Nonlin Soft Matter Phys. 2007 Jul;76(1 Pt 1):011918. doi: 10.1103/PhysRevE.76.011918. Epub 2007 Jul 25.
9
Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells.
J Cell Physiol. 2006 Apr;207(1):187-94. doi: 10.1002/jcp.20550.
10
Elucidation of extracellular matrix mechanics from muscle fibers and fiber bundles.
J Biomech. 2011 Feb 24;44(4):771-3. doi: 10.1016/j.jbiomech.2010.10.044. Epub 2010 Nov 18.

引用本文的文献

4
Local weakening of cell-extracellular matrix adhesion triggers basal epithelial tissue folding.
EMBO J. 2025 Apr;44(7):2002-2024. doi: 10.1038/s44318-025-00384-6. Epub 2025 Feb 17.
5
Force-activated zyxin assemblies coordinate actin nucleation and crosslinking to orchestrate stress fiber repair.
Curr Biol. 2025 Feb 24;35(4):854-870.e9. doi: 10.1016/j.cub.2025.01.042. Epub 2025 Feb 13.
6
Selection of Force Sensors for Measurement of Neotissue Microenvironments.
Tissue Eng Part A. 2025 Feb;31(3-4):164-173. doi: 10.1089/ten.tea.2024.0192. Epub 2024 Oct 25.
7
From stress fiber to focal adhesion: a role of actin crosslinkers in force transmission.
Front Cell Dev Biol. 2024 Aug 13;12:1444827. doi: 10.3389/fcell.2024.1444827. eCollection 2024.
8
Atomic force microscopy characterization of white and beige adipocyte differentiation.
In Vitro Cell Dev Biol Anim. 2024 Sep;60(8):842-852. doi: 10.1007/s11626-024-00925-z. Epub 2024 Jun 4.

本文引用的文献

1
Femtosecond laser disruption of subcellular organelles in a living cell.
Opt Express. 2004 Sep 6;12(18):4203-13. doi: 10.1364/opex.12.004203.
3
Mechanical forces alter zyxin unbinding kinetics within focal adhesions of living cells.
J Cell Physiol. 2006 Apr;207(1):187-94. doi: 10.1002/jcp.20550.
4
Cooperative effects of Rho and mechanical stretch on stress fiber organization.
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15895-900. doi: 10.1073/pnas.0506041102. Epub 2005 Oct 24.
5
Tensile properties of single stress fibers isolated from cultured vascular smooth muscle cells.
J Biomech. 2006;39(14):2603-10. doi: 10.1016/j.jbiomech.2005.08.026. Epub 2005 Oct 10.
6
Tensional homeostasis and the malignant phenotype.
Cancer Cell. 2005 Sep;8(3):241-54. doi: 10.1016/j.ccr.2005.08.010.
7
Pulse energy dependence of subcellular dissection by femtosecond laser pulses.
Opt Express. 2005 May 16;13(10):3690-6. doi: 10.1364/opex.13.003690.
8
The N-terminal Ac-EEED sequence plays a role in alpha-smooth-muscle actin incorporation into stress fibers.
J Cell Sci. 2005 Apr 1;118(Pt 7):1395-404. doi: 10.1242/jcs.01732. Epub 2005 Mar 15.
10
Extracellular matrix rigidity governs smooth muscle cell motility in a biphasic fashion.
J Cell Physiol. 2005 Jul;204(1):198-209. doi: 10.1002/jcp.20274.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验