Suppr超能文献

Rho与机械拉伸对应力纤维组织的协同作用。

Cooperative effects of Rho and mechanical stretch on stress fiber organization.

作者信息

Kaunas Roland, Nguyen Phu, Usami Shunichi, Chien Shu

机构信息

Department of Bioengineering, The Whitaker Institute of Biomedical Engineering, University of California at San Diego, La Jolla, CA 92093, USA.

出版信息

Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15895-900. doi: 10.1073/pnas.0506041102. Epub 2005 Oct 24.

Abstract

The small GTPase Rho regulates the formation of actin stress fibers in adherent cells through activation of its effector proteins Rho-kinase and mDia. We found in bovine aortic endothelial cells that inhibitions of Rho, Rho-kinase, and mDia (with C3, Y27632, and F1F2Delta1, respectively) suppressed stress fiber formation, but fibers appeared after 10% cyclic uniaxial stretch (1-Hz frequency). In contrast to the predominately perpendicular alignment of stress fibers to the stretch direction in normal cells, the stress fibers in cells with Rho pathway inhibition became oriented parallel to the stretch direction. In cells with normal Rho activity, the extent of perpendicular orientation of stress fibers depended on the magnitude of stretch. Expressing active RhoV14 plasmid in these cells enhanced the stretch-induced stress fiber orientation by an extent equivalent to an additional approximately 3% stretch. This augmentation of the stretch-induced perpendicular orientation by RhoV14 was blocked by Y27632 and by F1F2Delta1. Thus, the activity of the Rho pathway plays a critical role in determining both the direction and extent of stretch-induced stress fiber orientation in bovine aortic endothelial cells. Our results demonstrate that the stretch-induced stress fiber orientation is a function of the interplay between Rho pathway activity and the magnitude of stretching.

摘要

小GTP酶Rho通过激活其效应蛋白Rho激酶和mDia来调节贴壁细胞中肌动蛋白应力纤维的形成。我们在牛主动脉内皮细胞中发现,抑制Rho、Rho激酶和mDia(分别使用C3、Y27632和F1F2Delta1)可抑制应力纤维的形成,但在10%的循环单轴拉伸(1赫兹频率)后纤维会出现。与正常细胞中应力纤维主要垂直于拉伸方向排列不同,Rho信号通路受抑制的细胞中的应力纤维与拉伸方向平行排列。在Rho活性正常的细胞中,应力纤维垂直排列的程度取决于拉伸幅度。在这些细胞中表达活性RhoV14质粒可增强拉伸诱导的应力纤维排列,增强程度相当于额外约3%的拉伸。RhoV14对拉伸诱导的垂直排列的这种增强作用被Y27632和F1F2Delta1阻断。因此,Rho信号通路的活性在决定牛主动脉内皮细胞中拉伸诱导的应力纤维排列的方向和程度方面起着关键作用。我们的结果表明,拉伸诱导的应力纤维排列是Rho信号通路活性与拉伸幅度之间相互作用的函数。

相似文献

1
Cooperative effects of Rho and mechanical stretch on stress fiber organization.
Proc Natl Acad Sci U S A. 2005 Nov 1;102(44):15895-900. doi: 10.1073/pnas.0506041102. Epub 2005 Oct 24.
2
Regulation of stretch-induced JNK activation by stress fiber orientation.
Cell Signal. 2006 Nov;18(11):1924-31. doi: 10.1016/j.cellsig.2006.02.008. Epub 2006 Feb 28.
3
Cyclic stretch-induced stress fiber dynamics - dependence on strain rate, Rho-kinase and MLCK.
Biochem Biophys Res Commun. 2010 Oct 22;401(3):344-9. doi: 10.1016/j.bbrc.2010.09.046. Epub 2010 Sep 16.
5
Synergy between Rho signaling and matrix density in cyclic stretch-induced stress fiber organization.
Acta Biomater. 2014 May;10(5):1876-85. doi: 10.1016/j.actbio.2013.12.001. Epub 2013 Dec 12.
6
Rho and ROCK signaling in VEGF-induced microvascular endothelial hyperpermeability.
Microcirculation. 2006 Apr-May;13(3):237-47. doi: 10.1080/10739680600556944.
8
A kinematic model of stretch-induced stress fiber turnover and reorientation.
J Theor Biol. 2009 Mar 21;257(2):320-30. doi: 10.1016/j.jtbi.2008.11.024. Epub 2008 Dec 6.
9
Analysis and interpretation of stress fiber organization in cells subject to cyclic stretch.
J Biomech Eng. 2008 Jun;130(3):031009. doi: 10.1115/1.2907745.

引用本文的文献

1
Mechanics of cell sheets: plectin as an integrator of cytoskeletal networks.
Open Biol. 2025 Jan;15(1):240208. doi: 10.1098/rsob.240208. Epub 2025 Jan 29.
2
Roles of the Dbl family of RhoGEFs in mechanotransduction - a review.
Front Cell Dev Biol. 2024 Oct 16;12:1485725. doi: 10.3389/fcell.2024.1485725. eCollection 2024.
3
Mechanochemistry: Fundamental Principles and Applications.
Adv Sci (Weinh). 2024 Aug 29:e2403949. doi: 10.1002/advs.202403949.
4
Impact of uniaxial cyclic stretching on matrix-associated endothelial cell responses.
Mater Today Bio. 2024 Jul 9;27:101152. doi: 10.1016/j.mtbio.2024.101152. eCollection 2024 Aug.
5
Basal endothelial glycocalyx's response to shear stress: a review of structure, function, and clinical implications.
Front Cell Dev Biol. 2024 Mar 18;12:1371769. doi: 10.3389/fcell.2024.1371769. eCollection 2024.
6
Logic-based mechanistic machine learning on high-content images reveals how drugs differentially regulate cardiac fibroblasts.
Proc Natl Acad Sci U S A. 2024 Jan 30;121(5):e2303513121. doi: 10.1073/pnas.2303513121. Epub 2024 Jan 24.
7
Cyclic Stretch Promotes Cellular Reprogramming Process through Cytoskeletal-Nuclear Mechano-Coupling and Epigenetic Modification.
Adv Sci (Weinh). 2023 Nov;10(32):e2303395. doi: 10.1002/advs.202303395. Epub 2023 Sep 19.
8
Physical forces guide curvature sensing and cell migration mode bifurcating.
PNAS Nexus. 2023 Aug 1;2(8):pgad237. doi: 10.1093/pnasnexus/pgad237. eCollection 2023 Aug.
9
Engineering tumoral vascular leakiness with gold nanoparticles.
Nat Commun. 2023 Jul 17;14(1):4269. doi: 10.1038/s41467-023-40015-4.
10
A Statistical Mechanics Approach to Describe Cell Reorientation Under Stretch.
Bull Math Biol. 2023 May 30;85(7):60. doi: 10.1007/s11538-023-01161-4.

本文引用的文献

1
Mechanotransduction at cell-matrix and cell-cell contacts.
Annu Rev Biomed Eng. 2004;6:275-302. doi: 10.1146/annurev.bioeng.6.040803.140040.
2
Mechanisms of force generation and transmission by myofibroblasts.
Curr Opin Biotechnol. 2003 Oct;14(5):538-46. doi: 10.1016/j.copbio.2003.08.006.
3
Mechanical stress increases RhoA activation in airway smooth muscle cells.
Am J Respir Cell Mol Biol. 2003 Apr;28(4):436-42. doi: 10.1165/rcmb.4754.
4
Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch.
Am J Physiol Lung Cell Mol Physiol. 2003 Oct;285(4):L785-97. doi: 10.1152/ajplung.00336.2002. Epub 2003 Mar 14.
6
Mechanics of F-actin characterized with microfabricated cantilevers.
Biophys J. 2002 Nov;83(5):2705-15. doi: 10.1016/S0006-3495(02)75280-6.
7
Buckling of actin stress fibers: a new wrinkle in the cytoskeletal tapestry.
Cell Motil Cytoskeleton. 2002 Aug;52(4):266-74. doi: 10.1002/cm.10056.
8
Cell prestress. I. Stiffness and prestress are closely associated in adherent contractile cells.
Am J Physiol Cell Physiol. 2002 Mar;282(3):C606-16. doi: 10.1152/ajpcell.00269.2001.
9
mDia-interacting protein acts downstream of Rho-mDia and modifies Src activation and stress fiber formation.
J Biol Chem. 2001 Oct 19;276(42):39290-4. doi: 10.1074/jbc.M107026200. Epub 2001 Aug 16.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验