Suppr超能文献

使用电取向方法对单个微管进行介电测量。

Dielectric measurement of individual microtubules using the electroorientation method.

作者信息

Minoura Itsushi, Muto Etsuko

机构信息

Brain Developmental Research Group, RIKEN Brain Science Institute, Wako, Japan.

出版信息

Biophys J. 2006 May 15;90(10):3739-48. doi: 10.1529/biophysj.105.071324. Epub 2006 Feb 24.

Abstract

Little is known about the electrostatic/dynamic properties of microtubules, which are considered to underlie their electrostatic interactions with various proteins such as motor proteins, microtubule-associated proteins, and microtubules themselves (lateral association of microtubules). To measure the dielectric properties of microtubules, we developed an experiment system in which the electroorientation of microtubules was observed under a dark-field microscope. Upon application of an alternating electric field (0.5-1.9 x 10(5) V/m, 10 kHz-3 MHz), the microtubules were oriented parallel to the field line in a few seconds because of the dipole moment induced along their long axes. The process of this orientation was analyzed based on a dielectric ellipsoid model, and the conductivity and dielectric constant of each microtubule were calculated. The analyses revealed that the microtubules were highly conductive, which is consistent with the counterion polarization model-counterions bound to highly negatively charged microtubules can move along the long axis, and this mobility might be the origin of the high conductivity. Our experiment system provides a useful tool to quantitatively evaluate the polyelectrolyte nature of microtubules, thus paving the way for future studies aiming to understand the physicochemical mechanism underlying the electrostatic interactions of microtubules with various proteins.

摘要

人们对微管的静电/动力学性质了解甚少,而这些性质被认为是微管与各种蛋白质(如驱动蛋白、微管相关蛋白以及微管自身,即微管的侧向结合)之间静电相互作用的基础。为了测量微管的介电性质,我们开发了一个实验系统,在暗场显微镜下观察微管的电取向。施加交变电场(0.5 - 1.9×10⁵ V/m,10 kHz - 3 MHz)后,由于沿其长轴诱导产生的偶极矩,微管在几秒钟内就会与电场线平行排列。基于介电椭球模型对这种取向过程进行了分析,并计算了每个微管的电导率和介电常数。分析表明,微管具有高导电性,这与反离子极化模型一致——与高度带负电的微管结合的反离子可以沿长轴移动,这种迁移率可能是高导电性的来源。我们的实验系统为定量评估微管的聚电解质性质提供了一个有用的工具,从而为未来旨在理解微管与各种蛋白质之间静电相互作用的物理化学机制的研究铺平了道路。

相似文献

1
Dielectric measurement of individual microtubules using the electroorientation method.
Biophys J. 2006 May 15;90(10):3739-48. doi: 10.1529/biophysj.105.071324. Epub 2006 Feb 24.
3
Nanomechanical model of microtubule translocation in the presence of electric fields.
Biophys J. 2008 May 15;94(10):3880-92. doi: 10.1529/biophysj.107.112755. Epub 2008 Jan 30.
4
Electrostatic differences: A possible source for the functional differences between MCF7 and brain microtubules.
Biochem Biophys Res Commun. 2017 Nov 4;493(1):388-392. doi: 10.1016/j.bbrc.2017.09.012. Epub 2017 Sep 5.
5
Dielectric behavior of DNA in water-organic co-solvent mixtures.
Biophys Chem. 2006 Apr 20;121(1):7-13. doi: 10.1016/j.bpc.2005.12.002. Epub 2005 Dec 27.
6
[Experimental research for dielectric spectroscopy of normal human platelets].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2007 Jun;24(3):682-4.
7
Charge renormalization and inversion of a highly charged lipid bilayer: effects of dielectric discontinuities and charge correlations.
Phys Rev E Stat Nonlin Soft Matter Phys. 2005 Aug;72(2 Pt 1):021508. doi: 10.1103/PhysRevE.72.021508. Epub 2005 Aug 19.
9
Improved continuum electrostatic modelling in proteins, with comparison to experiment.
J Mol Biol. 1994 Feb 25;236(3):887-903. doi: 10.1006/jmbi.1994.1196.
10
Dielectric Relaxation of Spherical Polyelectrolyte Brushes: Movement of Counterions and Electrical Properties of the Brush Layer.
Langmuir. 2015 Aug 11;31(31):8566-76. doi: 10.1021/acs.langmuir.5b01408. Epub 2015 Jul 28.

引用本文的文献

1
Protein Manipulation via Dielectrophoresis: Theoretical Principles and Emerging Microfluidic Platforms.
Micromachines (Basel). 2025 Apr 29;16(5):531. doi: 10.3390/mi16050531.
4
[Study on the mesoscopic dynamic effects of tumor treating fields on cell tubulin].
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2024 Jun 25;41(3):569-576. doi: 10.7507/1001-5515.202312063.
5
Electrodynamic interaction between tumor treating fields and microtubule electrophysiological activities.
APL Bioeng. 2024 Jun 3;8(2):026118. doi: 10.1063/5.0197900. eCollection 2024 Jun.
7
Modeling non-genetic information dynamics in cells using reservoir computing.
iScience. 2024 Mar 28;27(4):109614. doi: 10.1016/j.isci.2024.109614. eCollection 2024 Apr 19.
9
The electrical properties of isolated microtubules.
Sci Rep. 2023 Jun 22;13(1):10165. doi: 10.1038/s41598-023-36801-1.
10
Gold Nanoparticles Inhibit Macropinocytosis by Decreasing KRAS Activation.
ACS Nano. 2023 May 23;17(10):9326-9337. doi: 10.1021/acsnano.3c00920. Epub 2023 May 2.

本文引用的文献

1
Hydrodynamics within the electric double layer on slipping surfaces.
Phys Rev Lett. 2004 Dec 17;93(25):257805. doi: 10.1103/PhysRevLett.93.257805. Epub 2004 Dec 15.
2
Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces.
Proc Natl Acad Sci U S A. 2004 Nov 16;101(46):16099-103. doi: 10.1073/pnas.0406076101. Epub 2004 Nov 8.
3
Direct observation of charge inversion by multivalent ions as a universal electrostatic phenomenon.
Phys Rev Lett. 2004 Oct 22;93(17):170802. doi: 10.1103/PhysRevLett.93.170802. Epub 2004 Oct 20.
4
Like-charge attraction between polyelectrolytes induced by counterion charge density waves.
Proc Natl Acad Sci U S A. 2003 Jul 22;100(15):8634-7. doi: 10.1073/pnas.1533355100. Epub 2003 Jul 9.
5
The number of repeat sequences in microtubule-associated protein 4 affects the microtubule surface properties.
J Biol Chem. 2003 Aug 8;278(32):29609-18. doi: 10.1074/jbc.M302186200. Epub 2003 May 28.
6
Analysis of the migration behaviour of single microtubules in electric fields.
Biochem Biophys Res Commun. 2002 Apr 26;293(1):602-9. doi: 10.1016/S0006-291X(02)00251-6.
7
Electrostatics of nanosystems: application to microtubules and the ribosome.
Proc Natl Acad Sci U S A. 2001 Aug 28;98(18):10037-41. doi: 10.1073/pnas.181342398. Epub 2001 Aug 21.
8
Engineering the processive run length of the kinesin motor.
J Cell Biol. 2000 Nov 27;151(5):1093-100. doi: 10.1083/jcb.151.5.1093.
9
Microtubule-based transport systems in neurons: the roles of kinesins and dyneins.
Annu Rev Neurosci. 2000;23:39-71. doi: 10.1146/annurev.neuro.23.1.39.
10
The C-terminus of tubulin increases cytoplasmic dynein and kinesin processivity.
Biophys J. 2000 Apr;78(4):1955-64. doi: 10.1016/S0006-3495(00)76743-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验