Suppr超能文献

设计驱动蛋白马达的持续运行长度。

Engineering the processive run length of the kinesin motor.

作者信息

Thorn K S, Ubersax J A, Vale R D

机构信息

Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94143, USA.

出版信息

J Cell Biol. 2000 Nov 27;151(5):1093-100. doi: 10.1083/jcb.151.5.1093.

Abstract

Conventional kinesin is a highly processive molecular motor that takes several hundred steps per encounter with a microtubule. Processive motility is believed to result from the coordinated, hand-over-hand motion of the two heads of the kinesin dimer, but the specific factors that determine kinesin's run length (distance traveled per microtubule encounter) are not known. Here, we show that the neck coiled-coil, a structure adjacent to the motor domain, plays an important role in governing the run length. By adding positive charge to the neck coiled-coil, we have created ultra-processive kinesin mutants that have fourfold longer run lengths than the wild-type motor, but that have normal ATPase activity and motor velocity. Conversely, adding negative charge on the neck coiled-coil decreases the run length. The gain in processivity can be suppressed by either proteolytic cleavage of tubulin's negatively charged COOH terminus or by high salt concentrations. Therefore, modulation of processivity by the neck coiled-coil appears to involve an electrostatic tethering interaction with the COOH terminus of tubulin. The ability to readily increase kinesin processivity by mutation, taken together with the strong sequence conservation of the neck coiled-coil, suggests that evolutionary pressures may limit kinesin's run length to optimize its in vivo function.

摘要

传统的驱动蛋白是一种高度持续运动的分子马达,每次与微管相遇能走几百步。持续运动被认为是由驱动蛋白二聚体两个头部协同的、交替式运动产生的,但决定驱动蛋白运行长度(每次与微管相遇所行进的距离)的具体因素尚不清楚。在此,我们表明颈部卷曲螺旋结构,即与马达结构域相邻的一种结构,在控制运行长度方面起着重要作用。通过向颈部卷曲螺旋结构添加正电荷,我们创造了超持续运动的驱动蛋白突变体,其运行长度比野生型马达长四倍,但具有正常的ATP酶活性和马达速度。相反,在颈部卷曲螺旋结构上添加负电荷会缩短运行长度。持续运动能力的增加可通过对微管带负电荷的COOH末端进行蛋白水解切割或高盐浓度来抑制。因此,颈部卷曲螺旋结构对持续运动能力的调节似乎涉及与微管COOH末端的静电拴系相互作用。通过突变轻易增加驱动蛋白持续运动能力的能力,再加上颈部卷曲螺旋结构的强序列保守性,表明进化压力可能会限制驱动蛋白的运行长度以优化其体内功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验