Suppr超能文献

羧基末端剪接变异改变了ClC通道门控和细胞外半胱氨酸反应性。

Carboxy terminus splice variation alters ClC channel gating and extracellular cysteine reactivity.

作者信息

He Liping, Denton Jerod, Nehrke Keith, Strange Kevin

机构信息

Department of Anesthesiology, Vanderbilt University Medical Center, Nashville, Tennessee 37232-2520, USA.

出版信息

Biophys J. 2006 May 15;90(10):3570-81. doi: 10.1529/biophysj.105.078295. Epub 2006 Feb 24.

Abstract

CLH-3a and CLH-3b are Caenorhabditis elegans ClC channel splice variants that exhibit striking differences in voltage, Cl(-), and H(+) sensitivity. The major primary structure differences between the channels include a 71 amino acid CLH-3a N-terminal extension and a 270 amino acid extension of the CLH-3b C-terminus. Deletion of the CLH-3a N-terminus or generation of a CLH-3a/b chimera has no effect on channel gating. In contrast, deletion of a 169 amino acid C-terminal CLH-3b splice insert or deletion of the last 11 amino acids of cystathionine-beta-synthase domain 1 gives rise to functional properties identical to those of CLH-3a. Voltage-, Cl(-)-, and H(+)-dependent gating of both channels are lost when their glutamate gates are mutated to alanine. Glutamate gate cysteine mutants exhibit similar degrees of inhibition by MTSET, but the inhibition time constant of CLH-3b is sevenfold greater than that of CLH-3a. Differences in MTSET inhibition are reversed by deletion of the same cytoplasmic C-terminal regions that alter CLH-3b gating. Our results indicate that splice variation of the CLH-3b cytoplasmic C-terminus alters extracellular structure and suggest that differences in the conformation of the outer pore vestibule and associated glutamate gate may account for differences in CLH-3a and CLH-3b gating.

摘要

CLH-3a和CLH-3b是秀丽隐杆线虫的ClC通道剪接变体,在电压、氯离子(Cl⁻)和氢离子(H⁺)敏感性方面表现出显著差异。这些通道之间主要的一级结构差异包括CLH-3a的71个氨基酸的N端延伸和CLH-3b的270个氨基酸的C端延伸。删除CLH-3a的N端或生成CLH-3a/b嵌合体对通道门控没有影响。相反,删除CLH-3b的169个氨基酸的C端剪接插入片段或删除胱硫醚-β-合酶结构域1的最后11个氨基酸会产生与CLH-3a相同的功能特性。当它们的谷氨酸门突变为丙氨酸时,两个通道的电压依赖性、氯离子依赖性和氢离子依赖性门控都会丧失。谷氨酸门半胱氨酸突变体对MTSET的抑制程度相似,但CLH-3b的抑制时间常数比CLH-3a大七倍。通过删除改变CLH-3b门控的相同细胞质C端区域,MTSET抑制的差异得以逆转。我们的结果表明,CLH-3b细胞质C端的剪接变异改变了细胞外结构,并表明外孔前庭构象和相关谷氨酸门的差异可能解释了CLH-3a和CLH-3b门控的差异。

相似文献

1
Carboxy terminus splice variation alters ClC channel gating and extracellular cysteine reactivity.
Biophys J. 2006 May 15;90(10):3570-81. doi: 10.1529/biophysj.105.078295. Epub 2006 Feb 24.
3
Alternative splicing of N- and C-termini of a C. elegans ClC channel alters gating and sensitivity to external Cl- and H+.
J Physiol. 2004 Feb 15;555(Pt 1):97-114. doi: 10.1113/jphysiol.2003.053165. Epub 2003 Oct 17.
4
Altered gating and regulation of a carboxy-terminal ClC channel mutant expressed in the Caenorhabditis elegans oocyte.
Am J Physiol Cell Physiol. 2006 Apr;290(4):C1109-18. doi: 10.1152/ajpcell.00423.2005. Epub 2005 Nov 23.
5
Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel.
Biophys J. 2016 Nov 1;111(9):1876-1886. doi: 10.1016/j.bpj.2016.09.036.
6
C. elegans STK39/SPAK ortholog-mediated inhibition of ClC anion channel activity is regulated by WNK-independent ERK kinase signaling.
Am J Physiol Cell Physiol. 2011 Mar;300(3):C624-35. doi: 10.1152/ajpcell.00343.2010. Epub 2010 Dec 15.
7
Regulatory Conformational Coupling between CLC Anion Channel Membrane and Cytoplasmic Domains.
Biophys J. 2016 Nov 1;111(9):1887-1896. doi: 10.1016/j.bpj.2016.09.037.
8
Identification of regulatory phosphorylation sites in a cell volume- and Ste20 kinase-dependent ClC anion channel.
J Gen Physiol. 2009 Jan;133(1):29-42. doi: 10.1085/jgp.200810080. Epub 2008 Dec 15.
9
CLC anion channel regulatory phosphorylation and conserved signal transduction domains.
Biophys J. 2012 Oct 17;103(8):1706-18. doi: 10.1016/j.bpj.2012.09.001. Epub 2012 Oct 16.
10
Removal of gating in voltage-dependent ClC-2 chloride channel by point mutations affecting the pore and C-terminus CBS-2 domain.
J Physiol. 2006 Apr 1;572(Pt 1):173-81. doi: 10.1113/jphysiol.2005.102392. Epub 2006 Feb 9.

引用本文的文献

1
ClC Channels and Transporters: Structure, Physiological Functions, and Implications in Human Chloride Channelopathies.
Front Pharmacol. 2017 Mar 23;8:151. doi: 10.3389/fphar.2017.00151. eCollection 2017.
2
Role of CBS and Bateman Domains in Phosphorylation-Dependent Regulation of a CLC Anion Channel.
Biophys J. 2016 Nov 1;111(9):1876-1886. doi: 10.1016/j.bpj.2016.09.036.
4
Regulatory phosphorylation induces extracellular conformational changes in a CLC anion channel.
Biophys J. 2013 May 7;104(9):1893-904. doi: 10.1016/j.bpj.2013.03.026.
5
The ClC-3 chloride channel and osmoregulation in the European sea bass, Dicentrarchus labrax.
J Comp Physiol B. 2013 Jul;183(5):641-62. doi: 10.1007/s00360-012-0737-9. Epub 2013 Jan 5.
6
CLC anion channel regulatory phosphorylation and conserved signal transduction domains.
Biophys J. 2012 Oct 17;103(8):1706-18. doi: 10.1016/j.bpj.2012.09.001. Epub 2012 Oct 16.
7
Putting the pieces together: a crystal clear window into CLC anion channel regulation.
Channels (Austin). 2011 Mar-Apr;5(2):101-5. doi: 10.4161/chan.5.2.14694. Epub 2011 Mar 1.
8
ATP induces conformational changes in the carboxyl-terminal region of ClC-5.
J Biol Chem. 2011 Feb 25;286(8):6733-41. doi: 10.1074/jbc.M110.175877. Epub 2010 Dec 20.
9
C. elegans STK39/SPAK ortholog-mediated inhibition of ClC anion channel activity is regulated by WNK-independent ERK kinase signaling.
Am J Physiol Cell Physiol. 2011 Mar;300(3):C624-35. doi: 10.1152/ajpcell.00343.2010. Epub 2010 Dec 15.

本文引用的文献

1
Altered gating and regulation of a carboxy-terminal ClC channel mutant expressed in the Caenorhabditis elegans oocyte.
Am J Physiol Cell Physiol. 2006 Apr;290(4):C1109-18. doi: 10.1152/ajpcell.00423.2005. Epub 2005 Nov 23.
2
CBS domains: structure, function, and pathology in human proteins.
Am J Physiol Cell Physiol. 2005 Dec;289(6):C1369-78. doi: 10.1152/ajpcell.00282.2005.
3
Carboxy-terminal truncations modify the outer pore vestibule of muscle chloride channels.
Biophys J. 2005 Sep;89(3):1710-20. doi: 10.1529/biophysj.104.056093. Epub 2005 Jun 24.
4
Cysteine accessibility in ClC-0 supports conservation of the ClC intracellular vestibule.
J Gen Physiol. 2005 Jun;125(6):601-17. doi: 10.1085/jgp.200509258. Epub 2005 May 16.
5
The fast gating mechanism in ClC-0 channels.
Biophys J. 2005 Jul;89(1):179-86. doi: 10.1529/biophysj.104.053447. Epub 2005 Apr 29.
6
Physiological functions of CLC Cl- channels gleaned from human genetic disease and mouse models.
Annu Rev Physiol. 2005;67:779-807. doi: 10.1146/annurev.physiol.67.032003.153245.
9
Functional and structural conservation of CBS domains from CLC chloride channels.
J Physiol. 2004 Jun 1;557(Pt 2):363-78. doi: 10.1113/jphysiol.2003.058453. Epub 2004 Jan 14.
10
A conserved pore-lining glutamate as a voltage- and chloride-dependent gate in the ClC-2 chloride channel.
J Physiol. 2003 Dec 15;553(Pt 3):873-9. doi: 10.1113/jphysiol.2003.055988. Epub 2003 Nov 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验