Srinivasan Vijayasarathy, Morowitz Harold J
Krasnow Institute for Advanced Study, George Mason University, Fairfax, Virginia 22030, USA.
Biol Bull. 2006 Feb;210(1):1-9. doi: 10.2307/4134531.
Autotrophs, the earliest prokaryotes, use CO(2) as the sole or the key source in the reductive citric acid cycle for carbon fixation. This pathway, also known as the reductive tricarboxylic acid (rTCA) cycle, has as its center the Krebs cycle running in the reductive direction, using reduced cofactors for energy. During the infection process, persistent pathogenic bacteria like Mycobacterium tuberculosis, Helicobacter pylori, and Salmonella typhi experience diverse and hostile environments both intracellularly (in macrophages) and extracellularly. M. tuberculosis, for example, must adapt to nutrient-deprived, hypoxic conditions in the granuloma. Genomic annotations reveal the presence of the key enzymes of the rTCA cycle--citrate lyase (Enzyme Commission number EC 4.1.3.6) and 2-oxoglutarate synthase (EC 1.2.7.3)--along with the rest of the TCA cycle enzymes. It is possible that there is a metabolic switch to anaerobic respiration in which a complete or a partial TCA cycle may operate in the reductive mode. This switch would both facilitate carbon fixation and restore the balance of oxidative and reductive reactions during environmental transitions, thus enabling the pathogen to survive, grow, and persist. Verification of enzyme function by biochemical investigations and validation of gene essentiality by knockout studies may reveal these enzymes to be rational drug targets for treatment of persistent microbial infections in mechanism-based drug discovery processes.
自养生物作为最早的原核生物,在还原性柠檬酸循环中利用二氧化碳作为唯一或关键的碳固定来源。这条途径,也被称为还原性三羧酸(rTCA)循环,其核心是以还原性方向运行的克雷布斯循环,利用还原型辅因子获取能量。在感染过程中,像结核分枝杆菌、幽门螺杆菌和伤寒沙门氏菌等持续性病原菌在细胞内(巨噬细胞中)和细胞外都会经历多样且恶劣的环境。例如,结核分枝杆菌必须适应肉芽肿中营养匮乏、缺氧的环境。基因组注释显示存在rTCA循环的关键酶——柠檬酸裂解酶(酶委员会编号EC 4.1.3.6)和2-氧代戊二酸合酶(EC 1.2.7.3),以及三羧酸循环的其他酶。有可能存在向无氧呼吸的代谢转换,其中完整或部分三羧酸循环可能以还原模式运行。这种转换既能促进碳固定,又能在环境转变期间恢复氧化和还原反应的平衡,从而使病原体得以存活、生长和持续存在。通过生化研究对酶功能进行验证,以及通过基因敲除研究对基因必要性进行验证,可能会揭示这些酶是基于机制的药物发现过程中治疗持续性微生物感染的合理药物靶点。