van der Woude Hester, Boersma Marelle G, Alink Gerrit M, Vervoort Jacques, Rietjens Ivonne M C M
Division of Toxicology, Wageningen University, Tuinlaan 5, 6703 HE Wageningen, The Netherlands.
Chem Biol Interact. 2006 Apr 15;160(3):193-203. doi: 10.1016/j.cbi.2005.12.005. Epub 2006 Mar 3.
This study investigates the pro-oxidant activity of 3'- and 4'-O-methylquercetin, two relevant phase II metabolites of quercetin without a functional catechol moiety, which is generally thought to be important for the pro-oxidant activity of quercetin. Oxidation of 3'- and 4'-O-methylquercetin with horseradish peroxidase in the presence of glutathione yielded two major metabolites for each compound, identified as the 6- and 8-glutathionyl conjugates of 3'- and 4'-O-methylquercetin. Thus, catechol-O-methylation of quercetin does not eliminate its pro-oxidant chemistry. Furthermore, the formation of these A-ring glutathione conjugates of 3'- and 4'-O-methylquercetin indicates that quercetin o-quinone may not be an intermediate in the formation of covalent quercetin adducts with glutathione, protein and/or DNA. In additional studies, it was demonstrated that covalent DNA adduct formation by a mixture of [4-(14)C]-3'- and 4'-O-methylquercetin in HepG2 cells amounted to only 42% of the level of covalent adducts formed by a similar amount of [4-(14)C]-quercetin. Altogether, these results reveal the effect of methylation of the catechol moiety of quercetin on its pro-oxidant behavior. Methylation of quercetin does not eliminate but considerably attenuates the cellular implications of the pro-oxidant activity of quercetin, which might add to the mechanisms underlying the apparent lack of in vivo carcinogenicity of this genotoxic compound. The paper also presents a new mechanism for the pro-oxidant chemistry of quercetin, eliminating the requirement for formation of an o-quinone, and explaining why methylation of the catechol moiety does not fully abolish formation of reactive DNA binding metabolites.
本研究调查了槲皮素的两种相关II相代谢产物3'-和4'-O-甲基槲皮素的促氧化活性,这两种代谢产物没有功能性儿茶酚部分,而儿茶酚部分通常被认为对槲皮素的促氧化活性很重要。在谷胱甘肽存在的情况下,用辣根过氧化物酶氧化3'-和4'-O-甲基槲皮素,每种化合物产生两种主要代谢产物,分别鉴定为3'-和4'-O-甲基槲皮素的6-和8-谷胱甘肽共轭物。因此,槲皮素的儿茶酚-O-甲基化并没有消除其促氧化化学性质。此外,3'-和4'-O-甲基槲皮素的这些A环谷胱甘肽共轭物的形成表明,槲皮素邻醌可能不是槲皮素与谷胱甘肽、蛋白质和/或DNA形成共价加合物的中间体。在另外的研究中,已证明在HepG2细胞中,[4-(14)C]-3'-和4'-O-甲基槲皮素混合物形成的共价DNA加合物仅为等量[4-(14)C]-槲皮素形成的共价加合物水平的42%。总之,这些结果揭示了槲皮素儿茶酚部分甲基化对其促氧化行为的影响。槲皮素的甲基化并没有消除,但大大减弱了槲皮素促氧化活性的细胞影响,这可能增加了这种遗传毒性化合物明显缺乏体内致癌性的潜在机制。本文还提出了槲皮素促氧化化学的一种新机制,消除了形成邻醌的要求,并解释了儿茶酚部分甲基化为何不能完全消除反应性DNA结合代谢产物的形成。