Briaire Jeroen J, Frijns Johan H M
ENT-department, Leiden University Medical Center, P.O. Box 9600, 2300 RC Leiden, The Netherlands.
Hear Res. 2006 Apr;214(1-2):17-27. doi: 10.1016/j.heares.2006.01.015. Epub 2006 Mar 7.
Cochlear implant research endeavors to optimize the spatial selectivity, threshold and dynamic range with the objective of improving the speech perception performance of the implant user. One of the ways to achieve some of these goals is by electrode design. New cochlear implant electrode designs strive to bring the electrode contacts into close proximity to the nerve fibers in the modiolus: this is done by placing the contacts on the medial side of the array and positioning the implant against the medial wall of scala tympani. The question remains whether this is the optimal position for a cochlea with intact neural fibers and, if so, whether it is also true for a cochlea with degenerated neural fibers. In this study a computational model of the implanted human cochlea is used to investigate the optimal position of the array with respect to threshold, dynamic range and spatial selectivity for a cochlea with intact nerve fibers and for degenerated nerve fibers. In addition, the model is used to evaluate the predictive value of eCAP measurements for obtaining peri-operative information on the neural status. The model predicts improved threshold, dynamic range and spatial selectivity for the peri-modiolar position at the basal end of the cochlea, with minimal influence of neural degeneration. At the apical end of the array (1.5 cochlear turns), the dynamic range and the spatial selectivity are limited due to the occurrence of cross-turn stimulation, with the exception of the condition without neural degeneration and with the electrode array along the lateral wall of scala tympani. The eCAP simulations indicate that a large P(0) peak occurs before the N(1)P(1) complex when the fibers are not degenerated. The absence of this peak might be used as an indicator for neural degeneration.
人工耳蜗研究致力于优化空间选择性、阈值和动态范围,以提高植入用户的言语感知性能。实现这些目标的方法之一是通过电极设计。新型人工耳蜗电极设计力求使电极触点靠近蜗轴中的神经纤维:这通过将触点置于阵列内侧并将植入体靠在鼓阶内侧壁上来实现。问题仍然存在:对于神经纤维完整的耳蜗来说,这是否是最佳位置;如果是,对于神经纤维退化的耳蜗是否也如此。在本研究中,使用植入式人类耳蜗的计算模型来研究阵列对于神经纤维完整和退化的耳蜗在阈值、动态范围和空间选择性方面的最佳位置。此外,该模型用于评估电刺激听神经复合动作电位(eCAP)测量对于获取围手术期神经状态信息的预测价值。该模型预测,在耳蜗基底端的近蜗轴位置,阈值、动态范围和空间选择性会得到改善,而神经退化的影响最小。在阵列顶端(1.5个耳蜗螺旋),由于出现跨螺旋刺激,动态范围和空间选择性受到限制,但无神经退化且电极阵列沿鼓阶外侧壁的情况除外。eCAP模拟表明,当纤维未退化时,在N(1)P(1)复合波之前会出现一个大的P(0)峰。这个峰的缺失可能用作神经退化的指标。