Abdollahi Farzaneh, Talebi H A, Patel Rajnikant V
Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada.
IEEE Trans Neural Netw. 2006 Jan;17(1):118-29. doi: 10.1109/TNN.2005.863458.
A stable neural network (NN)-based observer for general multivariable nonlinear systems is presented in this paper. Unlike most previous neural network observers, the proposed observer uses a nonlinear-in-parameters neural network (NLPNN). Therefore, it can be applied to systems with higher degrees of nonlinearity without any a priori knowledge about system dynamics. The learning rule for the neural network is a novel approach based on the modified backpropagation (BP) algorithm. An e-modification term is added to guarantee robustness of the observer. No strictly positive real (SPR) or any other strong assumption is imposed on the proposed approach. The stability of the recurrent neural network observer is shown by Lyapunov's direct method. Simulation results for a flexible-joint manipulator are presented to demonstrate the enhanced performance achieved by utilizing the proposed neural network observer.
本文提出了一种适用于一般多变量非线性系统的基于稳定神经网络(NN)的观测器。与大多数先前的神经网络观测器不同,所提出的观测器使用参数非线性神经网络(NLPNN)。因此,它可以应用于具有更高非线性程度的系统,而无需任何关于系统动力学的先验知识。神经网络的学习规则是一种基于改进反向传播(BP)算法的新方法。添加了一个e修正项以保证观测器的鲁棒性。所提出的方法没有施加严格正实(SPR)或任何其他强假设。通过李雅普诺夫直接法证明了递归神经网络观测器的稳定性。给出了柔性关节机械手的仿真结果,以证明利用所提出的神经网络观测器所实现的增强性能。