Suppr超能文献

一种基于神经网络的稳定观测器及其在柔性关节机器人中的应用。

A stable neural network-based observer with application to flexible-joint manipulators.

作者信息

Abdollahi Farzaneh, Talebi H A, Patel Rajnikant V

机构信息

Department of Electrical and Computer Engineering, Concordia University, Montreal, Canada.

出版信息

IEEE Trans Neural Netw. 2006 Jan;17(1):118-29. doi: 10.1109/TNN.2005.863458.

Abstract

A stable neural network (NN)-based observer for general multivariable nonlinear systems is presented in this paper. Unlike most previous neural network observers, the proposed observer uses a nonlinear-in-parameters neural network (NLPNN). Therefore, it can be applied to systems with higher degrees of nonlinearity without any a priori knowledge about system dynamics. The learning rule for the neural network is a novel approach based on the modified backpropagation (BP) algorithm. An e-modification term is added to guarantee robustness of the observer. No strictly positive real (SPR) or any other strong assumption is imposed on the proposed approach. The stability of the recurrent neural network observer is shown by Lyapunov's direct method. Simulation results for a flexible-joint manipulator are presented to demonstrate the enhanced performance achieved by utilizing the proposed neural network observer.

摘要

本文提出了一种适用于一般多变量非线性系统的基于稳定神经网络(NN)的观测器。与大多数先前的神经网络观测器不同,所提出的观测器使用参数非线性神经网络(NLPNN)。因此,它可以应用于具有更高非线性程度的系统,而无需任何关于系统动力学的先验知识。神经网络的学习规则是一种基于改进反向传播(BP)算法的新方法。添加了一个e修正项以保证观测器的鲁棒性。所提出的方法没有施加严格正实(SPR)或任何其他强假设。通过李雅普诺夫直接法证明了递归神经网络观测器的稳定性。给出了柔性关节机械手的仿真结果,以证明利用所提出的神经网络观测器所实现的增强性能。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验