Robles M, Uruchurtu L I
Centro de Investigación en Energía, Universidad Nacional Autónoma de México, AP 34, Temixco, Morelos CP62580, México.
J Chem Phys. 2006 Mar 7;124(9):94112. doi: 10.1063/1.2176676.
We use the shear viscosity expression from the Enskog theory of dense gases in a perturbative scheme for the Lennard-Jones (LJ) fluid. This perturbative scheme is formulated by combining the analytic rational function approximation method of Bravo Yuste and Santos [Phys. Rev. A 43, 5418 (1991)] for the radial distribution function of hard-sphere fluids and the well known Mansoori-Canfield/Rasaiah-Stell perturbation theory to determine an effective diameter for the LJ fluid. The scheme is reliable on a wide range of temperatures and densities, and is very accurate around the critical point. Using this information, we build an accurate empirical formula for the shear viscosity in the liquid phase, which fits the recent data [K. Meier et al., J. Chem. Phys. 121, 3671 (2004)] in the whole simulation range.
我们在针对 Lennard-Jones(LJ)流体的微扰方案中,使用了来自稠密气体的 Enskog 理论的剪切粘度表达式。该微扰方案是通过将 Bravo Yuste 和 Santos [《物理评论 A》43, 5418 (1991)] 用于硬球流体径向分布函数的解析有理函数近似方法,与著名的 Mansoori-Canfield/Rasaiah-Stell 微扰理论相结合来确定 LJ 流体的有效直径而制定的。该方案在广泛的温度和密度范围内是可靠的,并且在临界点附近非常精确。利用这些信息,我们建立了一个液相剪切粘度的精确经验公式,该公式在整个模拟范围内拟合了最近的数据 [K. Meier 等人,《化学物理杂志》121, 3671 (2004)]。