Suppr超能文献

Histopathological and molecular changes produced by hippocampal microinjection of domoic acid.

作者信息

Qiu Shenfeng, Currás-Collazo Margarita C

机构信息

Environmental Toxicology Graduate Program, University of California, Riverside, USA.

出版信息

Neurotoxicol Teratol. 2006 May-Jun;28(3):354-62. doi: 10.1016/j.ntt.2006.01.012. Epub 2006 Mar 9.

Abstract

The phytoplankton-derived neurotoxin, domoic acid (DOM), frequently causes poisoning of marine animals and poses an increasing threat to public health through contamination of seafood. In this study, we used stereotactic microinjection technique to administer varying amounts of DOM into the hippocampal CA1 region in order to examine potential histopathological changes after injection of sub-lethal concentrations to CA1 pyramidal neurons. Gross anatomical abnormalities in CA1 were observed at above 10 microM DOM (3 pmol in 0.3 microl saline). At 1mM concentration, DOM produces both ipsilateral and contralateral neuronal cell death in CA1, CA3 as well as dentate gyrus subfields. Animal behavioral changes after microinjection were similar to those observed by previous studies through systemic DOM injection. Neuronal degeneration was paralleled by reduced glutamate receptor (NR1, GluR1 and GluR6/7) immunolabeling throughout the whole hippocampal formation. Pre-injection of the AMPA/KA receptor antagonist NBQX (10 microM, 0.3 microl) blocked 1mM DOM-induced neuronal degeneration as well as behavioral symptoms. At concentrations lower than 10 microM, no histopathological changes were observed microscopically, nor were the levels of immunostaining of NR1, GluR1, GluR6/7 different. However, increased immunolabeling of autophosphorylated calcium-calmodulin-dependent kinase II (CaMKII, p-Thr286) and phosphorylated cAMP response element binding protein (CREB, p-Ser133) were observed at 24 h post-injection, suggesting that altered intracellular signal transduction mediated by GluRs might be an adaptive cellular protective mechanism against DOM-induced neurotoxicity.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验