Cardozo J A, Fernández-Juan M, Forcada F, Abecia A, Muiño-Blanco T, Cebrián-Pérez J A
Department of Biochemistry and Molecular and Cell Biology, School of Veterinary Medicine, University of Zaragoza, Miguel Servet 177, 50013 Zaragoza, Spain.
Theriogenology. 2006 Sep 1;66(4):841-50. doi: 10.1016/j.theriogenology.2006.01.058. Epub 2006 Mar 10.
This study was conducted to evaluate monthly changes in the ram seminal plasma protein profile using two-dimensional polyacrylamide gel electrophoresis (2D-PAGE) with a polyacrylamide linear gradient gel. Likewise, comparative analyses of the protein composition of ovine seminal plasma (SP) from ejaculates obtained along the year, and its relationship with sperm motility, viability and concentration of ejaculate were carried out. Western-blot analysis was performed to specifically detect P14, a ram SP protein postulated to be involved in sperm capacitation and gamete interaction [Barrios B, Fernández-Juan M, Muiño-Blanco T, Cebrián-Pérez JA. Immunocytochemical localization and biochemical characterization of two seminal plasma proteins which protect ram spermatozoa against cold-shock. J Androl 2005;26:539-49], and its variations along the year have also been established. The experiment was carried out from May 2003 to April 2004, with nine Rasa Aragonesa rams. Ejaculates obtained every 2 days were pooled and used for each assay, to avoid individual differences, and three two-dimensional SDS-PAGE gels were run for each month. The high resolution of the gradient gel allowed the image analysis software to detect around 252 protein spots, with pIs ranging from 4.2 to 7.6, and molecular weight (M(r)) from 12.5 to 83.9 kDa. Four protein spots (1, 2, 3 and 4) of low M(r) (15.1, 15.7, 15.9 and 21.0 kDa) and acidic pI (5.9, 5.3, 5.7 and 6.6), respectively, had the highest relative intensity in the SP map (11.2, 9.3, 4.7 and 7.7%, respectively). Spot 3 was more abundant (P<0.05) from May to December, and negatively correlated (P<0.05, r=-0.34) with sperm viability and concentration (P<0.05, r=0.36). Another 12 protein spots also had significant quantitative differences (P<0.05) along the year, and 17 protein spots, which correlated with some seminal quality parameter, did not show quantitative monthly changes. Western-blot analysis indicated that spots 1 and 2 reacted with the anti-P14 antibody, raised against the P14 band (approximate M(r) 14 kDa) of ram SP. This indicates that spots 1 and 2 are similar to RSP15 [Bergeron A, Villemure M, Lazure C, Manjunath P. Isolation and characterization of the major proteins of ram seminal plasma. Mol Reprod Dev 2005;71:461-70], bovine PDC-109 [Esch FS, Ling NC, Bohlen P, Ying S, Guillemin R. Primary structure of PDC-109, a major protein constituent of bovine seminal plasma. Biochem Biophys Res Commun 1983;113:861-7] (also called BSP A1/A2 [Manjunath P, Sairam MR. Purification and biochemical characterization of three major acidic proteins (BSP-A1, BSP-A2 and BSP-A3) from bovine seminal plasma. Biochem J 1987;241:685-92]) and goat GSP-14/15 kDa [Villemure M, Lazure C, Manjunath P. Isolation and characterization of gelatine-binding proteins from goat seminal plasma. Reprod Biol Endocrinol 2003;1:39], based on our previous results on the P14 amino acid sequence [Barrios B, Fernández-Juan M, Muiño-Blanco T, Cebrián-Pérez JA. Immunocytochemical localization and biochemical characterization of two seminal plasma proteins which protect ram spermatozoa against cold-shock. J Androl 2005;26:539-49].
本研究旨在使用带有聚丙烯酰胺线性梯度凝胶的二维聚丙烯酰胺凝胶电泳(2D-PAGE)评估公羊精液血浆蛋白质谱的月度变化。同样,对全年采集的绵羊精液血浆(SP)的蛋白质组成进行了比较分析,并分析了其与精子活力、生存力和射精浓度的关系。进行了蛋白质免疫印迹分析,以特异性检测P14,一种推测参与精子获能和配子相互作用的公羊SP蛋白[Barrios B, Fernández-Juan M, Muiño-Blanco T, Cebrián-Pérez JA. 两种保护公羊精子免受冷休克的精液血浆蛋白的免疫细胞化学定位和生化特性。《雄性学杂志》2005年;26:539 - 49],并确定了其全年的变化情况。实验于2003年5月至2004年4月进行,选用了9只阿拉贡拉斯公羊。每2天采集的射精样本混合后用于各项检测,以避免个体差异,每月进行三次二维SDS-PAGE凝胶电泳。梯度凝胶的高分辨率使图像分析软件能够检测到约252个蛋白质斑点,其等电点范围为4.2至7.6,分子量(M(r))为12.5至83.9 kDa。四个低分子量(分别为15.1、15.7、15.9和21.0 kDa)且酸性等电点(分别为5.9、5.3、5.7和6.6)的蛋白质斑点(1、2、3和4)在SP图谱中的相对强度最高(分别为11.2%、9.3%、4.7%和7.7%)。斑点3从5月到12月更为丰富(P<0.05),且与精子生存力和浓度呈负相关(P<0.05,r = -0.34)(P<0.05,r = 0.36)。另外12个蛋白质斑点全年也存在显著的定量差异(P<0.05),17个与某些精液质量参数相关的蛋白质斑点未表现出月度定量变化。蛋白质免疫印迹分析表明,斑点1和2与针对公羊SP的P14条带(约M(r) 14 kDa)产生的抗P14抗体发生反应。根据我们之前关于P14氨基酸序列的结果[Barrios B, Fernández-Juan M, Muiño-Blanco T, Cebrián-Pérez JA. 两种保护公羊精子免受冷休克的精液血浆蛋白的免疫细胞化学定位和生化特性。《雄性学杂志》2005年;26:539 - 49],这表明斑点1和2类似于RSP15 [Bergeron A, Villemure M, Lazure C, Manjunath P. 公羊精液血浆主要蛋白质的分离和特性。《分子生殖与发育》2005年;71:461 - 70]、牛PDC-109 [Esch FS, Ling NC, Bohlen P, Ying S, Guillemin R. 牛精液血浆主要蛋白质成分PDC-109的一级结构。《生物化学与生物物理研究通讯》1983年;113:861 - 7](也称为BSP A1/A2 [Manjunath P, Sairam MR. 从牛精液血浆中纯化和生化特性分析三种主要酸性蛋白质(BSP-A1、BSP-A2和BSP-A3)。《生物化学杂志》1987年;241:685 - 92])和山羊GSP-14/15 kDa [Villemure M, Lazure C, Manjunath P. 山羊精液血浆中明胶结合蛋白的分离和特性。《生殖生物学与内分泌学》2003年;1:39]。