Grasshoff Christian, Rudolph Uwe, Antkowiak Bernd
Department of Anesthesiology, University of Tubingen, Tubingen, Germany.
Curr Opin Anaesthesiol. 2005 Aug;18(4):386-91. doi: 10.1097/01.aco.0000174961.90135.dc.
Amnesia, hypnosis and immobility are essential components of general anaesthesia. This review highlights recent advances in our understanding of how these components are achieved at a molecular level.
Commonly used volatile anaesthetic agents such as isoflurane or sevoflurane cause immobility by modulating multiple molecular targets predominantly in the spinal cord, including gamma-aminobutyric acidA receptors, glycine receptors, glutamate receptors and TREK-1 potassium channels. In contrast, intravenously applied drugs such as propofol or etomidate depress spinal motor reflexes almost exclusively via enhancing gamma-aminobutyric acidA receptor function. Studies on knock-in animals showed that etomidate and propofol act via gamma-aminobutyric acidA receptors containing beta3 subunits, whereas gamma-aminobutyric acidA receptors including alpha2 and gamma subunits mediate the myorelaxant properties of diazepam. These findings suggest that a large fraction of gamma-aminobutyric acidA receptors in the spinal cord assemble from alpha2, beta3 and most probably gamma2 subunits. The hypnotic actions of etomidate are mediated by beta3-containing gamma-aminobutyric acidA receptors expressed in the brain. In contrast, gamma-aminobutyric acidA receptors harbouring beta2 subunits produce sedation, but not hypnosis. Furthermore, there is growing evidence that extrasynaptic gamma-aminobutyric acidA receptors in the hippocampus containing alpha5 subunits contribute to amnesia.
Clinical anaesthesia is based on drug actions at multiple anatomical sites in the brain. The finding that amnesia, hypnosis and immobility involve distinct molecular targets opens new avenues for developing improved therapeutic strategies in anaesthesia.
失忆、催眠和肌肉松弛是全身麻醉的重要组成部分。本综述重点介绍了我们在分子水平上对这些组成部分如何实现的理解方面的最新进展。
常用的挥发性麻醉剂,如异氟烷或七氟烷,主要通过调节脊髓中的多个分子靶点来导致肌肉松弛,这些靶点包括γ-氨基丁酸A受体、甘氨酸受体、谷氨酸受体和TREK-1钾通道。相比之下,静脉注射的药物,如丙泊酚或依托咪酯,几乎完全通过增强γ-氨基丁酸A受体功能来抑制脊髓运动反射。对基因敲入动物的研究表明,依托咪酯和丙泊酚通过含有β3亚基的γ-氨基丁酸A受体起作用,而包括α2和γ亚基的γ-氨基丁酸A受体介导地西泮的肌肉松弛特性。这些发现表明,脊髓中很大一部分γ-氨基丁酸A受体由α2、β3以及很可能还有γ2亚基组装而成。依托咪酯的催眠作用由大脑中表达的含β3的γ-氨基丁酸A受体介导。相比之下,含有β2亚基的γ-氨基丁酸A受体产生镇静作用,但不产生催眠作用。此外,越来越多的证据表明,海马体中含有α5亚基的突触外γ-氨基丁酸A受体与失忆有关。
临床麻醉基于药物在大脑多个解剖部位的作用。失忆、催眠和肌肉松弛涉及不同分子靶点这一发现为开发改进的麻醉治疗策略开辟了新途径。