Suppr超能文献

小麦染色体末端的基因进化。

Gene evolution at the ends of wheat chromosomes.

作者信息

See Deven R, Brooks Steven, Nelson James C, Brown-Guedira Gina, Friebe Bernd, Gill Bikram S

机构信息

Department of Plant Pathology and Agricultural Research Services Department of Agronomy, United States Department of Agriculture, Kansas State University, Manhattan, KS 66506, USA.

出版信息

Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4162-7. doi: 10.1073/pnas.0508942102. Epub 2006 Mar 6.

Abstract

Wheat ESTs mapped to deletion bins in the distal 42% of the long arm of chromosome 4B (4BL) were ordered in silico based on blastn homology against rice pseudochromosome 3. The ESTs spanned 29 cM on the short arm of rice chromosome 3, which is known to be syntenic to long arms of group-4 chromosomes of wheat. Fine-scale deletion-bin and genetic mapping revealed that 83% of ESTs were syntenic between wheat and rice, a far higher level of synteny than previously reported, and 6% were nonsyntenic (not located on rice chromosome 3). One inversion spanning a 5-cM region in rice and three deletion bins in wheat was identified. The remaining 11% of wheat ESTs showed no sequence homology in rice and mapped to the terminal 5% of the wheat chromosome 4BL. In this region, 27% of ESTs were duplicated, and it accounted for 70% of the recombination in the 4BL arm. Globally in wheat, no sequence homology ESTs mapped to the terminal bins, and ESTs rarely mapped to interstitial chromosomal regions known to be recombination hot spots. The wheat-rice comparative genomics analysis indicated that gene evolution occurs preferentially at the ends of chromosomes, driven by duplication and divergence associated with high rates of recombination.

摘要

根据与水稻假染色体3的blastn同源性,对定位在4B染色体(4BL)长臂远端42%缺失区间的小麦EST进行了电子排序。这些EST在水稻染色体3短臂上跨越29厘摩,已知该短臂与小麦4组染色体的长臂是同线的。精细尺度的缺失区间和遗传图谱显示,83%的EST在小麦和水稻之间是同线的,这一水平远高于先前报道,6%是非同线的(不在水稻染色体3上)。鉴定出一个跨越水稻5厘摩区域和小麦三个缺失区间的倒位。其余11%的小麦EST在水稻中无序列同源性,定位在小麦染色体4BL的末端5%。在该区域,27%的EST是重复的,并且占4BL臂重组的70%。在小麦整体中,无序列同源性的EST定位在末端区间,并且EST很少定位到已知为重组热点的染色体间区域。小麦-水稻比较基因组学分析表明,基因进化优先发生在染色体末端,由与高重组率相关的重复和分化驱动。

相似文献

1
Gene evolution at the ends of wheat chromosomes.
Proc Natl Acad Sci U S A. 2006 Mar 14;103(11):4162-7. doi: 10.1073/pnas.0508942102. Epub 2006 Mar 6.
2
Genomic targeting and mapping of tiller inhibition gene (tin3) of wheat using ESTs and synteny with rice.
Funct Integr Genomics. 2008 Feb;8(1):33-42. doi: 10.1007/s10142-007-0057-4. Epub 2007 Sep 22.
4
Deletion mapping of homoeologous group 6-specific wheat expressed sequence tags.
Genetics. 2004 Oct;168(2):677-86. doi: 10.1534/genetics.104.034843.
6
Comparative DNA sequence analysis of mapped wheat ESTs reveals the complexity of genome relationships between rice and wheat.
Funct Integr Genomics. 2004 Mar;4(1):34-46. doi: 10.1007/s10142-003-0098-2. Epub 2004 Jan 22.
8
Sequence analysis of the long arm of rice chromosome 11 for rice-wheat synteny.
Funct Integr Genomics. 2004 May;4(2):102-17. doi: 10.1007/s10142-004-0109-y. Epub 2004 Apr 14.
10
Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S.
Theor Appl Genet. 2004 Oct;109(6):1303-10. doi: 10.1007/s00122-004-1745-2. Epub 2004 Sep 22.

引用本文的文献

2
Introgression of chromosome 5P from Agropyron cristatum enhances grain weight in a wheat background.
Theor Appl Genet. 2024 Jun 21;137(7):165. doi: 10.1007/s00122-024-04670-5.
5
Fine mapping of the gene in a chromosome variation region at the distal terminus of 1AS.
Front Plant Sci. 2022 Sep 20;13:1006510. doi: 10.3389/fpls.2022.1006510. eCollection 2022.
6
Assessing the Potential of Using the Langdon 5D(5B) Substitution Line for the Introgression of Into Durum Wheat.
Front Plant Sci. 2022 Jul 7;13:927728. doi: 10.3389/fpls.2022.927728. eCollection 2022.
7
Genomic and Molecular Characterization of Wheat Streak Mosaic Virus Resistance Locus () in Common Wheat ( L.).
Front Plant Sci. 2022 Jul 1;13:928949. doi: 10.3389/fpls.2022.928949. eCollection 2022.
8
Genome-Wide Analysis and Expression Profiles of Ethylene Signal Genes and Apetala2/Ethylene-Responsive Factors in Peanut ( L.).
Front Plant Sci. 2022 Mar 17;13:828482. doi: 10.3389/fpls.2022.828482. eCollection 2022.
10
Zea mays RNA-seq estimated transcript abundances are strongly affected by read mapping bias.
BMC Genomics. 2021 Apr 20;22(1):285. doi: 10.1186/s12864-021-07577-3.

本文引用的文献

1
A cytogenetic ladder-map of the wheat homoeologous group-4 chromosomes.
Theor Appl Genet. 1995 Jun;90(7-8):1007-11. doi: 10.1007/BF00222914.
2
Molecular mapping of wheat. Homoeologous group 2.
Genome. 1995 Jun;38(3):516-24. doi: 10.1139/g95-067.
4
The map-based sequence of the rice genome.
Nature. 2005 Aug 11;436(7052):793-800. doi: 10.1038/nature03895.
6
Consistent over-estimation of gene number in complex plant genomes.
Curr Opin Plant Biol. 2004 Dec;7(6):732-6. doi: 10.1016/j.pbi.2004.09.003.
7
The new genes of rice: a closer look.
Trends Plant Sci. 2004 Jun;9(6):281-5. doi: 10.1016/j.tplants.2004.04.006.
9
Sequencing of the Triticum monococcum hardness locus reveals good microcolinearity with rice.
Mol Genet Genomics. 2004 May;271(4):377-86. doi: 10.1007/s00438-004-0991-y. Epub 2004 Mar 11.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验