Suppr超能文献

Somatic sodium channels of frog olfactory receptor neurones are inactivated at rest.

作者信息

Pun R Y, Gesteland R C

机构信息

Department of Physiology and Biophysics, University of Cincinnati, OH 45267.

出版信息

Pflugers Arch. 1991 Jun;418(5):504-11. doi: 10.1007/BF00497779.

Abstract

Membrane excitability of acutely isolated olfactory receptor neurones (ORNs) of the grass frog (R. pipiens) was studied with the use of the whole-cell "tight-seal" patch recording technique. ORNs of the frog had a mean resting membrane potential of -52 mV, a mean input resistance of 1-2 G omega, and a mean capacitance of 4.5 pF. In the majority of cells examined (over 70%), short duration (several milliseconds) action potentials were elicited at the end of a hyperpolarising pulse (off-spike) or following hyperpolarization of the membrane potential by injection of current. Under voltage-clamp conditions, a fast inward current followed by an outward current could be evoked upon depolarisation of the membrane. The fast inward current decayed with a time constant of 1-2 ms, with an e-fold decrease per 52 mV increase in voltage, and was blocked by the selective voltage-dependent sodium channel blocker tetrodotoxin (0.5-1 microM). Steady-state inactivation studies revealed that the mean voltage for half-inactivation (V1/2) was -82 mV (range -72 to -98 mV), which indicates that the voltage-dependent Na+ channels in the cell body or soma of frog ORNs are not available for conducting currents at the resting membrane potential. This finding raises the possibility that voltage-dependent Na+ channels may not play a significant role in sensory transduction at the soma. Our results indicate that ORNs of the frog are very efficient in transducing signals towards the brain since currents generated at the cilia will be directed towards depolarising the axons.(ABSTRACT TRUNCATED AT 250 WORDS)

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验