Suppr超能文献

具有高维协变量的生存数据的相加风险模型。

Additive risk models for survival data with high-dimensional covariates.

作者信息

Ma Shuangge, Kosorok Michael R, Fine Jason P

机构信息

Department of Biostatistics, University of Washington, Seattle, Washington 98195, USA.

出版信息

Biometrics. 2006 Mar;62(1):202-10. doi: 10.1111/j.1541-0420.2005.00405.x.

Abstract

As a useful alternative to Cox's proportional hazard model, the additive risk model assumes that the hazard function is the sum of the baseline hazard function and the regression function of covariates. This article is concerned with estimation and prediction for the additive risk models with right censored survival data, especially when the dimension of the covariates is comparable to or larger than the sample size. Principal component regression is proposed to give unique and numerically stable estimators. Asymptotic properties of the proposed estimators, component selection based on the weighted bootstrap, and model evaluation techniques are discussed. This approach is illustrated with analysis of the primary biliary cirrhosis clinical data and the diffuse large B-cell lymphoma genomic data. It is shown that this methodology is numerically stable and effective in dimension reduction, while still being able to provide satisfactory prediction and classification results.

摘要

作为Cox比例风险模型的一种有用替代方法,相加风险模型假定风险函数是基线风险函数与协变量回归函数之和。本文关注具有右删失生存数据的相加风险模型的估计和预测,特别是当协变量的维度与样本量相当或大于样本量时。提出主成分回归以给出唯一且数值稳定的估计量。讨论了所提出估计量的渐近性质、基于加权自助法的成分选择以及模型评估技术。通过对原发性胆汁性肝硬化临床数据和弥漫性大B细胞淋巴瘤基因组数据的分析来说明这种方法。结果表明,该方法在降维方面数值稳定且有效,同时仍能够提供令人满意的预测和分类结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验