Meller R, Clayton C, Torrey D J, Schindler C K, Lan J Q, Cameron J A, Chu X P, Xiong Z G, Simon R P, Henshall D C
Robert S. Dow Neurobiology Laboratories, Legacy Research, Portland, OR 97232, USA.
Epilepsy Res. 2006 Jul;70(1):3-14. doi: 10.1016/j.eplepsyres.2006.02.002. Epub 2006 Mar 20.
In response to harmful stresses, cells induce programmed cell death (PCD) or apoptosis. Seizures can induce neural damage and activate biochemical pathways associated with PCD. Since seizures trigger intracellular calcium overload, it has been presumed that the intrinsic cell death pathway mediated by mitochondrial dysfunction would modulate cell death following seizures. However, previous work suggests that the extrinsic cell death pathway may initiate the damage program. Here we investigate intrinsic versus extrinsic cell death pathway activation using caspase cleavage as a marker for activation of these pathways in a rat in vitro model of seizures. Hippocampal cells, chronically treated with kynurenic acid, had kynurenic acid withdrawn to induce seizure-like activity for 40 min. Subjecting rat hippocampal cultures to seizures increased cell death and apoptosis-like DNA fragmentation using TUNEL staining. Seizure-induced cell death was blocked by both MK801 (10 microM) and CNQX (40 microM), which suggests multiple glutamate receptors regulate seizure-induced cell death. Cleavage of the initiator caspases, caspase 8 and 12 were increased 4h following seizure, and cleavage of the quintessential executioner caspase, caspase 3 was increased 4h following seizure. In contrast, caspase 9 cleavage only increased 24h following seizure. Using an affinity labeling approach to trap activated caspases in situ, we show that caspase 8 is the apical caspase activated following seizures. Finally, we show that the caspase 8 inhibitor Ac-IETD-CHO was more effective at blocking seizure-induced cell death than the caspase 9 inhibitor Ac-LEHD-CHO. Taken together, our data suggests the extrinsic cell death pathway-associated caspase 8 is activated following seizures in vitro.
作为对有害应激的反应,细胞会诱导程序性细胞死亡(PCD)或凋亡。癫痫发作可诱导神经损伤并激活与PCD相关的生化途径。由于癫痫发作会引发细胞内钙超载,因此推测由线粒体功能障碍介导的内源性细胞死亡途径会调节癫痫发作后的细胞死亡。然而,先前的研究表明外源性细胞死亡途径可能启动损伤程序。在此,我们使用半胱天冬酶切割作为这些途径激活的标志物,在大鼠癫痫发作体外模型中研究内源性与外源性细胞死亡途径的激活情况。用犬尿氨酸长期处理海马细胞后,去除犬尿氨酸以诱导40分钟的癫痫样活动。使用TUNEL染色法,对大鼠海马培养物进行癫痫发作处理会增加细胞死亡和凋亡样DNA片段化。癫痫发作诱导的细胞死亡被MK801(10微摩尔)和CNQX(40微摩尔)阻断,这表明多种谷氨酸受体调节癫痫发作诱导的细胞死亡。起始半胱天冬酶caspase 8和12的切割在癫痫发作后4小时增加,典型的执行性半胱天冬酶caspase 3的切割在癫痫发作后4小时增加。相比之下,caspase 9的切割仅在癫痫发作后24小时增加。使用亲和标记方法原位捕获活化的半胱天冬酶,我们发现caspase 8是癫痫发作后激活的顶端半胱天冬酶。最后,我们表明半胱天冬酶8抑制剂Ac-IETD-CHO在阻断癫痫发作诱导的细胞死亡方面比半胱天冬酶9抑制剂Ac-LEHD-CHO更有效。综上所述,我们的数据表明在体外癫痫发作后,与外源性细胞死亡途径相关的半胱天冬酶8被激活。