Centurión David, Mehotra Suneet, Sánchez-López Araceli, Gupta Saurabh, MaassenVanDenBrink Antoinette, Villalón Carlos M
Departamento de Farmacobiología, Cinvestav-Coapa., Czda. de los Tenorios 235, Col. Granjas-Coapa, 14330 México D.F., México.
Eur J Pharmacol. 2006 Mar 27;535(1-3):234-42. doi: 10.1016/j.ejphar.2006.02.010. Epub 2006 Mar 20.
This study set out to analyse the potential ability of some 5-hydroxytryptamine (5-HT) receptor ligands widely used in cardiovascular experimental models to interact with vascular alpha1-adrenoceptors in the pithed rat. These ligands included: methiothepin, methysergide and metergoline (5-HT(1)/5-HT2); WAY-100635, buspirone, ipsapirone and 8-hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT) (5-HT(1A)); GR127935 (5-HT(1B/1D)); ketanserin, ritanserin, spiperone and pizotifen (5-HT2); granisetron and metoclopramide (5-HT3); tropisetron (5-HT3/5-HT4); ergotamine (5-HT(1B/1D), 5-ht(5A/5B)); clozapine (5-HT6/5-HT7); as well as LY215840 and mesulergine (5-HT2/5-HT7). For this purpose, the increases in diastolic blood pressure produced by the selective alpha1-adrenoceptor agonist, phenylephrine, were analysed before and after the above antagonists or saline. The adrenoceptor antagonist properties of prazosin (alpha1) and yohimbine (alpha2) were also analysed for comparison. Thus, the phenylephrine-induced vasopressor responses were dose-dependently antagonised with the following apparent rank order of potency by: prazosin > or = methiothepin > ketanserin > clozapine > or = lisuride >> buspirone; this potency correlates with the affinity of these compounds for alpha1-adrenoceptor binding sites. In contrast, the other compounds were either devoid of any blocking effect on--or even potentiated (i.e. lisuride, methysergide, 8-OH-DPAT, granisetron and GR127935)--the responses to phenylephrine. These results show that methiothepin, ketanserin, clozapine, lisuride and buspirone can block alpha1-adrenoceptors in the rat systemic vasculature.
本研究旨在分析一些在心血管实验模型中广泛使用的5-羟色胺(5-HT)受体配体与脊髓麻醉大鼠血管α1-肾上腺素能受体相互作用的潜在能力。这些配体包括:甲硫哒嗪、麦角新碱和麦角乙脲(5-HT(1)/5-HT2);WAY-100635、丁螺环酮、伊沙匹隆和8-羟基-2-(二正丙基氨基)四氢萘(8-OH-DPAT)(5-HT(1A));GR1279总5(5-HT(1B/1D));酮色林、利坦色林、螺哌隆和苯噻啶(5-HT2);格拉司琼和甲氧氯普胺(5-HT(3));托烷司琼(5-HT(3)/5-HT(4));麦角胺(5-HT(1B/1D),5-ht(5A/5B));氯氮平(5-HT(6)/5-HT(7));以及LY215840和美舒麦角(5-HT(2)/5-HT(7))。为此,在给予上述拮抗剂或生理盐水之前和之后分析了选择性α1-肾上腺素能受体激动剂去氧肾上腺素引起的舒张压升高情况。还分析了哌唑嗪(α1)和育亨宾(α2)的肾上腺素能受体拮抗特性以作比较。因此,去氧肾上腺素诱导的升压反应被以下药物以剂量依赖性方式拮抗,其效价的明显顺序为:哌唑嗪≥甲硫哒嗪>酮色林>氯氮平≥利舒脲>丁螺环酮;这种效价与这些化合物对α1-肾上腺素能受体结合位点的亲和力相关。相比之下,其他化合物要么对去氧肾上腺素的反应没有任何阻断作用,要么甚至增强了(即利舒脲、麦角新碱、8-OH-DPAT、格拉司琼和GR127935)这种反应。这些结果表明,甲硫哒嗪、酮色林、氯氮平、利舒脲和丁螺环酮可阻断大鼠全身血管中的α1-肾上腺素能受体。