Suppr超能文献

脑膜炎奈瑟菌fur突变对基因转录全局调控的影响。

Effect of Neisseria meningitidis fur mutations on global control of gene transcription.

作者信息

Delany Isabel, Grifantini Renata, Bartolini Erika, Rappuoli Rino, Scarlato Vincenzo

机构信息

Molecular Immunology Unit, Chiron Vaccines, Via Fiorentina 1, 53100 Siena, Italy.

出版信息

J Bacteriol. 2006 Apr;188(7):2483-92. doi: 10.1128/JB.188.7.2483-2492.2006.

Abstract

The ferric uptake regulator Fur is a well-known iron-responsive repressor of gene transcription, which is used by many bacteria to respond to the low-iron environment that pathogens encounter during infection. In this study we used comparative transcriptome analysis to define the role of the Fur protein in the global control of gene transcription and iron regulation in Neisseria meningitidis. By using the Fur-null mutant and its complemented derivative, we identified 83 genes whose transcription is controlled by Fur. We report that Fur may control differential expression of these genes by binding directly to their promoters or through indirect mechanisms. In addition, mutation of the fur gene resulted in the induction of the heat shock response, and transcription of these genes does not respond to iron limitation. Furthermore, analysis of the iron starvation stimulon in the Fur-null mutant provided evidences of iron-responsive regulation that is independent of Fur. We began to dissect the regulatory networks of Fur and the heat shock (stress) response in N. meningitidis, and the observed interlink between the two circuits is discussed.

摘要

铁摄取调节蛋白Fur是一种著名的铁响应基因转录阻遏物,许多细菌利用它来应对病原体在感染过程中遇到的低铁环境。在本研究中,我们使用比较转录组分析来确定Fur蛋白在脑膜炎奈瑟菌基因转录的全局调控和铁调节中的作用。通过使用Fur基因缺失突变体及其互补衍生物,我们鉴定出83个转录受Fur控制的基因。我们报告Fur可能通过直接结合其启动子或通过间接机制来控制这些基因的差异表达。此外,fur基因突变导致热休克反应的诱导,并且这些基因的转录对铁限制无反应。此外,对Fur基因缺失突变体中铁饥饿刺激因子的分析提供了独立于Fur的铁响应调节的证据。我们开始剖析脑膜炎奈瑟菌中Fur的调控网络和热休克(应激)反应,并讨论了观察到的两个回路之间的相互联系。

相似文献

1
Effect of Neisseria meningitidis fur mutations on global control of gene transcription.
J Bacteriol. 2006 Apr;188(7):2483-92. doi: 10.1128/JB.188.7.2483-2492.2006.
2
The iron-responsive regulator fur is transcriptionally autoregulated and not essential in Neisseria meningitidis.
J Bacteriol. 2003 Oct;185(20):6032-41. doi: 10.1128/JB.185.20.6032-6041.2003.
4
Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis.
Mol Microbiol. 2004 May;52(4):1081-90. doi: 10.1111/j.1365-2958.2004.04030.x.
5
Identification of iron-activated and -repressed Fur-dependent genes by transcriptome analysis of Neisseria meningitidis group B.
Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9542-7. doi: 10.1073/pnas.1033001100. Epub 2003 Jul 25.
7
Role of Hfq in iron-dependent and -independent gene regulation in Neisseria meningitidis.
Microbiology (Reading). 2010 Aug;156(Pt 8):2316-2326. doi: 10.1099/mic.0.039040-0. Epub 2010 Apr 29.
8
Identification of the in vitro target of an iron-responsive AraC-like protein from Neisseria meningitidis that is in a regulatory cascade with Fur.
Microbiology (Reading). 2011 Aug;157(Pt 8):2235-2247. doi: 10.1099/mic.0.048033-0. Epub 2011 May 20.
9
Characterization of the Neisseria gonorrhoeae Iron and Fur Regulatory Network.
J Bacteriol. 2016 Jul 28;198(16):2180-91. doi: 10.1128/JB.00166-16. Print 2016 Aug 15.
10
The role of the Ferric Uptake Regulator (Fur) in regulation of Helicobacter pylori iron uptake.
Helicobacter. 2002 Aug;7(4):237-44. doi: 10.1046/j.1523-5378.2002.00088.x.

引用本文的文献

2
Regulation of cytochrome components by NrrF, a Fur-controlled small noncoding RNA.
FEBS Open Bio. 2017 Aug 5;7(9):1302-1315. doi: 10.1002/2211-5463.12266. eCollection 2017 Sep.
3
Unraveling pathogenesis: from functional genomics to experimental models.
F1000Res. 2017 Jul 26;6:1228. doi: 10.12688/f1000research.11279.1. eCollection 2017.
4
The Hfq regulon of .
FEBS Open Bio. 2017 Apr 25;7(6):777-788. doi: 10.1002/2211-5463.12218. eCollection 2017 Jun.
5
Transcriptomic buffering of cryptic genetic variation contributes to meningococcal virulence.
BMC Genomics. 2017 Apr 7;18(1):282. doi: 10.1186/s12864-017-3616-7.
8
HexR Controls Glucose-Responsive Genes and Central Carbon Metabolism in Neisseria meningitidis.
J Bacteriol. 2015 Dec 7;198(4):644-54. doi: 10.1128/JB.00659-15.
9
Global transcriptome analysis reveals small RNAs affecting Neisseria meningitidis bacteremia.
PLoS One. 2015 May 7;10(5):e0126325. doi: 10.1371/journal.pone.0126325. eCollection 2015.

本文引用的文献

1
Identification of the iron-responsive genes of Neisseria gonorrhoeae by microarray analysis in defined medium.
J Bacteriol. 2005 Jul;187(14):4865-74. doi: 10.1128/JB.187.14.4865-4874.2005.
3
Transcriptional profiling of Helicobacter pylori Fur- and iron-regulated gene expression.
Microbiology (Reading). 2005 Feb;151(Pt 2):533-546. doi: 10.1099/mic.0.27404-0.
4
Campylobacter jejuni gene expression in response to iron limitation and the role of Fur.
Microbiology (Reading). 2005 Jan;151(Pt 1):243-257. doi: 10.1099/mic.0.27412-0.
5
The RpoH-mediated stress response in Neisseria gonorrhoeae is regulated at the level of activity.
J Bacteriol. 2004 Dec;186(24):8443-52. doi: 10.1128/JB.186.24.8443-8452.2004.
7
Iron acquisition and regulation in Campylobacter jejuni.
J Bacteriol. 2004 Jul;186(14):4714-29. doi: 10.1128/JB.186.14.4714-4729.2004.
8
Identification of tandem duplicate regulatory small RNAs in Pseudomonas aeruginosa involved in iron homeostasis.
Proc Natl Acad Sci U S A. 2004 Jun 29;101(26):9792-7. doi: 10.1073/pnas.0403423101. Epub 2004 Jun 21.
9
Fur functions as an activator and as a repressor of putative virulence genes in Neisseria meningitidis.
Mol Microbiol. 2004 May;52(4):1081-90. doi: 10.1111/j.1365-2958.2004.04030.x.
10
Hfq, a new chaperoning role: binding to messenger RNA determines access for small RNA regulator.
EMBO J. 2004 Jan 28;23(2):396-405. doi: 10.1038/sj.emboj.7600058. Epub 2004 Jan 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验