Bigioni Terry P, Lin Xiao-Min, Nguyen Toan T, Corwin Eric I, Witten Thomas A, Jaeger Heinrich M
James Franck Institute, University of Chicago, Chicago, Illinois 60637, USA.
Nat Mater. 2006 Apr;5(4):265-70. doi: 10.1038/nmat1611. Epub 2006 Mar 19.
When a drop of a colloidal solution of nanoparticles dries on a surface, it leaves behind coffee-stain-like rings of material with lace-like patterns or clumps of particles in the interior. These non-uniform mass distributions are manifestations of far-from-equilibrium effects, such as fluid flows and solvent fluctuations during late-stage drying. However, recently a strikingly different drying regime promising highly uniform, long-range-ordered nanocrystal monolayers has been found. Here we make direct, real-time and real-space observations of nanocrystal self-assembly to reveal the mechanism. We show how the morphology of drop-deposited nanoparticle films is controlled by evaporation kinetics and particle interactions with the liquid-air interface. In the presence of an attractive particle-interface interaction, rapid early-stage evaporation dynamically produces a two-dimensional solution of nanoparticles at the liquid-air interface, from which nanoparticle islands nucleate and grow. This self-assembly mechanism produces monolayers with exceptional long-range ordering that are compact over macroscopic areas, despite the far-from-equilibrium evaporation process. This new drop-drying regime is simple, robust and scalable, is insensitive to the substrate material and topography, and has a strong preference for forming monolayer films. As such, it stands out as an excellent candidate for the fabrication of technologically important ultra thin film materials for sensors, optical devices and magnetic storage media.
当一滴纳米颗粒的胶体溶液在表面干燥时,会留下类似咖啡渍的物质环,其具有蕾丝般的图案或内部有颗粒团块。这些不均匀的质量分布是远离平衡效应的表现,例如后期干燥过程中的流体流动和溶剂波动。然而,最近发现了一种截然不同的干燥方式,有望形成高度均匀、长程有序的纳米晶体单层。在这里,我们对纳米晶体自组装进行直接、实时和实空间观察以揭示其机制。我们展示了液滴沉积的纳米颗粒薄膜的形态如何受蒸发动力学以及颗粒与液 - 气界面的相互作用控制。在存在吸引性颗粒 - 界面相互作用的情况下,早期快速蒸发动态地在液 - 气界面产生纳米颗粒的二维溶液,纳米颗粒岛从此处成核并生长。尽管蒸发过程远离平衡,但这种自组装机制产生的单层具有卓越的长程有序性,在宏观区域内紧密排列。这种新的液滴干燥方式简单、稳健且可扩展,对基底材料和形貌不敏感,并且强烈倾向于形成单层薄膜。因此,它是制造用于传感器、光学器件和磁存储介质等技术上重要的超薄膜材料的极佳候选方法。