文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

退火温度对Fe₂O₃纳米颗粒的影响:用于先进技术应用的合成优化及结构、光学、形态和磁性特性表征

Influence of annealing temperature on Fe₂O₃ nanoparticles: Synthesis optimization and structural, optical, morphological, and magnetic properties characterization for advanced technological applications.

作者信息

Chakraborty Antara R, Zohora Toma Fatema Tuz, Alam Khorshed, Yousuf Shanjida B, Hossain K Saadat

机构信息

Nanophysics and Soft Matter Laboratory, Department of Physics, University of Dhaka, Dhaka, 1000, Bangladesh.

Atomic Energy Centre, Bangladesh Atomic Energy Commission, Dhaka, Dhaka-1000, Bangladesh.

出版信息

Heliyon. 2024 Oct 31;10(21):e40000. doi: 10.1016/j.heliyon.2024.e40000. eCollection 2024 Nov 15.


DOI:10.1016/j.heliyon.2024.e40000
PMID:39553662
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11567039/
Abstract

In this study, Iron oxide nanoparticles (Fe₂O₃ NPs) were synthesized using iron chloride hexahydrate (FeCl·6HO) and ammonia solution through a straightforward co-precipitation method. The nanoparticles were annealed at temperatures of 100 °C, 300 °C, 500 °C, 700 °C, and 900 °C, with one sample left unannealed. Comprehensive analyses were performed using X-Ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Zeta potential, Dynamic Light Scattering (DLS), Scanning Electron Microscopy (SEM), and UV-Vis Spectrophotometry. The XRD patterns confirmed the presence of both Maghemite (γ-FeO) and Hematite (α-FeO) phases, with a phase transition observed between 100 °C and 300 °C, and the most pronounced transition occurring at 500 °C. At this optimal temperature, the crystallite size was 19.14 nm, the average particle size was 37.36 nm, and the band gap energy was measured at 1.76 eV. SEM images revealed that nanoparticles formed clusters as the annealing temperature increased. The zeta potential measurements showed a range from 6.12 mV at 100 °C to -1.9 mV at 900 °C, indicating changes in particle stability. DLS analysis indicated a size increase from 86.81 nm at 300 °C to 1577 nm at 900 °C, reflecting aggregation trends. The reduction in band gap energy with higher temperatures is attributed to enhanced crystallinity and increased particle size. The magnetic properties of Fe₂O₃ NPs were evaluated using a Physical Property Measurement System (PPMS), revealing an increase in magnetic response with rising annealing temperatures. The transition from superparamagnetic γ-Fe₂O₃ to weakly ferromagnetic α-Fe₂O₃ was confirmed through changes in the hysteresis loop area and shape. These findings suggest that 500 °C is the optimal annealing temperature for producing Fe₂O₃ NPs with desirable properties for applications in targeted drug delivery, MRI contrast enhancement, and environmental remediation. This research advances the engineering of Fe₂O₃ NPs, paving the way for their use in various technological applications.

摘要

在本研究中,使用六水合氯化铁(FeCl·6HO)和氨水溶液通过简单的共沉淀法合成了氧化铁纳米颗粒(Fe₂O₃ NPs)。将纳米颗粒在100°C、300°C、500°C、700°C和900°C的温度下进行退火处理,同时保留一个未退火的样品。使用X射线衍射(XRD)、傅里叶变换红外光谱(FTIR)、zeta电位、动态光散射(DLS)、扫描电子显微镜(SEM)和紫外可见分光光度法进行了综合分析。XRD图谱证实了磁赤铁矿(γ-FeO)和赤铁矿(α-FeO)相的存在,在100°C至300°C之间观察到了相变,最明显的相变发生在500°C。在此最佳温度下,微晶尺寸为19.14nm,平均粒径为37.36nm,带隙能量测量为1.76eV。SEM图像显示,随着退火温度的升高,纳米颗粒形成了团聚体。zeta电位测量结果显示,从100°C时的6.12mV到900°C时的-1.9mV,表明颗粒稳定性发生了变化。DLS分析表明,粒径从300°C时的86.81nm增加到900°C时的1577nm,反映了团聚趋势。带隙能量随温度升高而降低归因于结晶度提高和粒径增大。使用物理性能测量系统(PPMS)评估了Fe₂O₃ NPs的磁性,结果表明随着退火温度的升高,磁响应增强。通过磁滞回线面积和形状的变化证实了从超顺磁性γ-Fe₂O₃到弱铁磁性α-Fe₂O₃的转变。这些发现表明,500°C是制备具有理想性能的Fe₂O₃ NPs的最佳退火温度,这些性能适用于靶向药物递送、MRI造影增强和环境修复等应用。本研究推进了Fe₂O₃ NPs的工程化,为其在各种技术应用中的使用铺平了道路。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/8e1b6efece94/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/ab725043d408/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/a656e903de98/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/1c439dc1e91f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/f6fee5fe1c2f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/eed5a6a9c36e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/f3e2c553e20a/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/62d36e09e96f/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/3c70b4d08589/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/58b4cd78968d/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/8e1b6efece94/gr10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/ab725043d408/gr1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/a656e903de98/gr2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/1c439dc1e91f/gr3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/f6fee5fe1c2f/gr4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/eed5a6a9c36e/gr5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/f3e2c553e20a/gr6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/62d36e09e96f/gr7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/3c70b4d08589/gr8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/58b4cd78968d/gr9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5af7/11567039/8e1b6efece94/gr10.jpg

相似文献

[1]
Influence of annealing temperature on Fe₂O₃ nanoparticles: Synthesis optimization and structural, optical, morphological, and magnetic properties characterization for advanced technological applications.

Heliyon. 2024-10-31

[2]
Structural and Magnetic Properties of Dilute Ca²⁺ Doped Iron Oxide Nanoparticles.

J Nanosci Nanotechnol. 2016-1

[3]
Extraction of gamma iron oxide (γ-FeO) nanoparticles from waste can: Structure, morphology and magnetic properties.

Heliyon. 2024-5-9

[4]
Effect of the temperature on structural and optical properties of zinc oxide nanoparticles.

J Nanosci Nanotechnol. 2014-7

[5]
Characterizations of diverse mole of pure and Ni-doped α-Fe2O3 synthesized nanoparticles through chemical precipitation route.

Spectrochim Acta A Mol Biomol Spectrosc. 2014-7-15

[6]
Structural, optical and antibacterial activity of pure and co-doped (Fe & Ni) tin oxide nanoparticles.

Spectrochim Acta A Mol Biomol Spectrosc. 2023-2-15

[7]
Effect of (Ag, Zn) co-doping on structural, optical and bactericidal properties of CuO nanoparticles synthesized by a microwave-assisted method.

Dalton Trans. 2021-5-14

[8]
Antibacterial efficacy ofleaf extract-enriched zinc oxide and iron doped zinc nanoparticles: a comparative study.

Nanotechnology. 2024-5-7

[9]
Facile synthesis of calcium borate nanoparticles and the annealing effect on their structure and size.

Int J Mol Sci. 2012-11-8

[10]
Characterization, Antiplasmodial and Cytotoxic Activities of Green Synthesized Iron Oxide Nanoparticles Using Aqueous Extract.

Molecules. 2022-8-3

引用本文的文献

[1]
Green synthesis of metallic nanoparticles using species: improved stability and biological activities.

Nanoscale Adv. 2025-7-24

[2]
Tunable Magnetic Heating in LaSrMnO and LaDySrMnO Nanoparticles: Frequency- and Amplitude-Dependent Behavior.

Nanomaterials (Basel). 2025-4-23

本文引用的文献

[1]
Exploring the influence of iron doping on structural, morphological and optical properties of chemical bath deposited cadmium selenide thin films for optoelectronic applications.

Heliyon. 2024-6-20

[2]
Effect of stabilizer content in different solvents on the synthesis of ZnO nanoparticles using the chemical precipitation method.

Heliyon. 2023-10-10

[3]
Dewetted Silver Nanoparticle-Dispersed WO Heterojunction Nanostructures on Glass Fibers for Efficient Visible-Light-Active Photocatalysis by Magnetron Sputtering.

ACS Omega. 2021-12-28

[4]
Gold, Silver and Iron Oxide Nanoparticles: Synthesis and Bionanoconjugation Strategies Aimed at Electrochemical Applications.

Top Curr Chem (Cham). 2020-1-7

[5]
Design strategies for shape-controlled magnetic iron oxide nanoparticles.

Adv Drug Deliv Rev. 2018-12-13

[6]
Structural and magnetic properties of core-shell Au/FeO nanoparticles.

Sci Rep. 2017-2-6

[7]
Development of a biocompatible magnetic nanofluid by incorporating SPIONs in Amazonian oils.

Spectrochim Acta A Mol Biomol Spectrosc. 2016-4-12

[8]
Analysis of the interaction of surfactants oleic acid and oleylamine with iron oxide nanoparticles through molecular mechanics modeling.

Langmuir. 2015-4-7

[9]
Atomic layer deposition of metastable β-Fe₂O₃ via isomorphic epitaxy for photoassisted water oxidation.

ACS Appl Mater Interfaces. 2014-12-24

[10]
Superparamagnetism and other magnetic features in granular materials: a review on ideal and real systems.

J Nanosci Nanotechnol. 2008-6

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索