Suppr超能文献

鸟苷酸环化酶基因家族内的多个谱系特异性扩增。

Multiple lineage specific expansions within the guanylyl cyclase gene family.

作者信息

Fitzpatrick David A, O'Halloran Damien M, Burnell Ann M

机构信息

Biology Department, National University of Ireland Maynooth, Maynooth, Co. Kildare, Ireland.

出版信息

BMC Evol Biol. 2006 Mar 20;6:26. doi: 10.1186/1471-2148-6-26.

Abstract

BACKGROUND

Guanylyl cyclases (GCs) are responsible for the production of the secondary messenger cyclic guanosine monophosphate, which plays important roles in a variety of physiological responses such as vision, olfaction, muscle contraction, homeostatic regulation, cardiovascular and nervous function. There are two types of GCs in animals, soluble (sGCs) which are found ubiquitously in cell cytoplasm, and receptor (rGC) forms which span cell membranes. The complete genomes of several vertebrate and invertebrate species are now available. These data provide a platform to investigate the evolution of GCs across a diverse range of animal phyla.

RESULTS

In this analysis we located GC genes from a broad spectrum of vertebrate and invertebrate animals and reconstructed molecular phylogenies for both sGC and rGC proteins. The most notable features of the resulting phylogenies are the number of lineage specific rGC and sGC expansions that have occurred during metazoan evolution. Among these expansions is a large nematode specific rGC clade comprising 21 genes in C. elegans alone; a vertebrate specific expansion in the natriuretic receptors GC-A and GC-B; a vertebrate specific expansion in the guanylyl GC-C receptors, an echinoderm specific expansion in the sperm rGC genes and a nematode specific sGC clade. Our phylogenetic reconstruction also shows the existence of a basal group of nitric oxide (NO) insensitive insect and nematode sGCs which are regulated by O2. This suggests that the primordial eukaryotes probably utilized sGC as an O2 sensor, with the ligand specificity of sGC later switching to NO which provides a very effective local cell-to-cell signalling system. Phylogenetic analysis of the sGC and bacterial heme nitric oxide/oxygen binding protein domain supports the hypothesis that this domain originated from a cyanobacterial source.

CONCLUSION

The most salient feature of our phylogenies is the number of lineage specific expansions, which have occurred within the GC gene family during metazoan evolution. Our phylogenetic analyses reveal that the rGC and sGC multi-domain proteins evolved early in eumetazoan evolution. Subsequent gene duplications, tissue specific expression patterns and lineage specific expansions resulted in the evolution of new networks of interaction and new biological functions associated with the maintenance of organismal complexity and homeostasis.

摘要

背景

鸟苷酸环化酶(GCs)负责产生第二信使环磷酸鸟苷,其在多种生理反应中发挥重要作用,如视觉、嗅觉、肌肉收缩、稳态调节、心血管和神经功能。动物体内有两种类型的GCs,一种是可溶性(sGCs),普遍存在于细胞质中;另一种是跨细胞膜的受体(rGC)形式。现在已有几种脊椎动物和无脊椎动物的完整基因组。这些数据为研究不同动物门中GCs的进化提供了一个平台。

结果

在本分析中,我们定位了广泛的脊椎动物和无脊椎动物中的GC基因,并重建了sGC和rGC蛋白的分子系统发育树。所得系统发育树最显著的特征是后生动物进化过程中发生的谱系特异性rGC和sGC扩增的数量。在这些扩增中,有一个大型的线虫特异性rGC进化枝,仅秀丽隐杆线虫中就包含21个基因;利钠肽受体GC-A和GC-B中的脊椎动物特异性扩增;鸟苷酸GC-C受体中的脊椎动物特异性扩增;精子rGC基因中的棘皮动物特异性扩增以及一个线虫特异性sGC进化枝。我们的系统发育重建还显示存在一组对一氧化氮(NO)不敏感的昆虫和线虫sGCs基础群体,它们受氧气调节。这表明原始真核生物可能利用sGC作为氧气传感器,后来sGC的配体特异性转变为NO,这提供了一种非常有效的局部细胞间信号系统。对sGC和细菌血红素一氧化氮/氧气结合蛋白结构域的系统发育分析支持了该结构域起源于蓝细菌的假说。

结论

我们系统发育树最显著的特征是后生动物进化过程中GC基因家族内发生的谱系特异性扩增的数量。我们的系统发育分析表明,rGC和sGC多结构域蛋白在真后生动物进化早期就已进化。随后的基因复制、组织特异性表达模式和谱系特异性扩增导致了与维持生物体复杂性和稳态相关的新相互作用网络和新生物学功能的进化。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eaa2/1435932/572160a4e511/1471-2148-6-26-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验