Kuhn Michaela
Institut für Physiologie, Universität Würzburg, Röntgenring 9, Würzburg, 97070, Germany.
Handb Exp Pharmacol. 2009(191):47-69. doi: 10.1007/978-3-540-68964-5_4.
Besides soluble guanylyl cyclase (GC), the receptor for NO, there are seven plasma membrane forms of guanylyl cyclase (GC) receptors, enzymes that synthesize the second-messenger cyclic GMP (cGMP). All membrane GCs (GC-A to GC-G) share a basic topology, which consists of an extracellular ligand binding domain, a short transmembrane region, and an intracellular domain that contains the catalytic (GC) region. Although the presence of the extracellular domain suggests that all these enzymes function as receptors, specific ligands have been identified for only four of them (GC-A through GC-D). GC-A mediates the endocrine effects of atrial and B-type natriuretic peptides regulating arterial blood pressure and volume homeostasis and also local antihypertrophic and antifibrotic actions in the heart. GC-B, the specific receptor for C-type natriuretic peptide, has a critical role in endochondral ossification. GC-C mediates the effects of guanylin and uroguanylin on intestinal electrolyte and water transport and epithelial cell growth and differentiation. GC-E and GC-F are colocalized within the same photoreceptor cells of the retina and have an important role in phototransduction. Finally, GC-D and GC-G appear to be pseudogenes in the human. In rodents, GC-D is exclusively expressed in the olfactory neuroepithelium, with chemosensory functions. GC-G is the last member of the membrane GC form to be identified. No other mammalian transmembrane GCs are predicted on the basis of gene sequence repositories. In contrast to the other orphan receptor GCs, GC-G has a broad tissue distribution in rodents, including the lung, intestine, kidney, skeletal muscle, and sperm, raising the possibility that there is another yet to be discovered family of cGMP-generating ligands. This chapter reviews the structure and functions of membrane GCs, with special focus on the insights gained to date from genetically modified mice and the role of alterations of these ligand/receptor systems in human diseases.
除了可溶性鸟苷酸环化酶(GC)(一氧化氮的受体)外,还有七种质膜形式的鸟苷酸环化酶(GC)受体,这些酶可合成第二信使环磷酸鸟苷(cGMP)。所有膜GC(GC-A至GC-G)都具有基本的拓扑结构,由细胞外配体结合域、短跨膜区域和包含催化(GC)区域的细胞内结构域组成。尽管细胞外结构域的存在表明所有这些酶都作为受体发挥作用,但仅为其中四种(GC-A至GC-D)鉴定出了特异性配体。GC-A介导心房利钠肽和B型利钠肽的内分泌作用,调节动脉血压和容量稳态,还介导心脏局部的抗肥厚和抗纤维化作用。GC-B是C型利钠肽的特异性受体,在软骨内骨化中起关键作用。GC-C介导鸟苷素和尿鸟苷素对肠道电解质和水转运以及上皮细胞生长和分化的作用。GC-E和GC-F共定位于视网膜的同一光感受器细胞内,在光转导中起重要作用。最后,GC-D和GC-G在人类中似乎是假基因。在啮齿动物中,GC-D仅在嗅觉神经上皮中表达,具有化学感受功能。GC-G是膜GC形式中最后一个被鉴定的成员。根据基因序列库预测,没有其他哺乳动物跨膜GC。与其他孤儿受体GC不同,GC-G在啮齿动物中具有广泛的组织分布,包括肺、肠、肾、骨骼肌和精子,这增加了存在另一个尚未发现的cGMP生成配体家族的可能性。本章综述膜GC的结构和功能,特别关注迄今为止从基因改造小鼠获得的见解以及这些配体/受体系统改变在人类疾病中的作用。