Suppr超能文献

利用碳氢化合物的细菌对丙烷、正丙胺和丙酸盐的代谢

Metabolism of Propane, n-Propylamine, and Propionate by Hydrocarbon-Utilizing Bacteria.

作者信息

Blevins W T, Perry J J

机构信息

Department of Microbiology, North Carolina State University, Raleigh, North Carolina 27607.

出版信息

J Bacteriol. 1972 Oct;112(1):513-8. doi: 10.1128/jb.112.1.513-518.1972.

Abstract

Studies were conducted on the oxidation and assimilation of various three-carbon compounds by a gram-positive rod isolated from soil and designated strain R-22. This organism can utilize propane, propionate, or n-propylamine as sole source of carbon and energy. Respiration rates, enzyme assays, and (14)CO(2) incorporation experiments suggest that propane is metabolized via methyl ketone formation; propionate and n-propylamine are metabolized via the methylmalonyl-succinate pathway. Isocitrate lyase activity was found in cells grown on acetate and was not present in cells grown on propionate or n-propylamine. (14)CO(2) was incorporated into pyruvate when propionate and n-propylamine were oxidized in the presence of NaAsO(2), but insignificant radioactivity was found in pyruvate produced during the oxidation of propane and acetone. The n-propylamine dissimilatory mechanism was inducible in strain R-22, and amine dehydrogenase activity was detected in cells grown on n-propylamine. Radiorespirometer and (14)CO(2) incorporation studies with several propane-utilizing organisms indicate that the methylmalonyl-succinate pathway is the predominant one for the metabolism of propionate.

摘要

对从土壤中分离出的一株革兰氏阳性杆菌(命名为菌株R - 22)对各种三碳化合物的氧化和同化作用进行了研究。该生物体能够利用丙烷、丙酸盐或正丙胺作为唯一的碳源和能源。呼吸速率、酶活性测定以及(14)CO₂掺入实验表明,丙烷通过甲基酮的形成进行代谢;丙酸盐和正丙胺通过甲基丙二酰 - 琥珀酸途径进行代谢。在以乙酸盐为碳源生长的细胞中发现了异柠檬酸裂解酶活性,而在以丙酸盐或正丙胺为碳源生长的细胞中未发现该活性。当丙酸盐和正丙胺在亚砷酸钠存在下被氧化时,(14)CO₂掺入到丙酮酸中,但在丙烷和丙酮氧化过程中产生的丙酮酸中未发现明显的放射性。正丙胺异化机制在菌株R - 22中是可诱导的,并且在以正丙胺为碳源生长的细胞中检测到了胺脱氢酶活性。对几种利用丙烷的生物体进行的放射性呼吸测定仪和(14)CO₂掺入研究表明,甲基丙二酰 - 琥珀酸途径是丙酸盐代谢的主要途径。

相似文献

1
Metabolism of Propane, n-Propylamine, and Propionate by Hydrocarbon-Utilizing Bacteria.
J Bacteriol. 1972 Oct;112(1):513-8. doi: 10.1128/jb.112.1.513-518.1972.
2
Divergent metabolic pathways for propane and propionate utilization by a soil isolate.
J Bacteriol. 1969 Jul;99(1):216-21. doi: 10.1128/jb.99.1.216-221.1969.
3
Metabolism of n-propylamine, isopropylamine, and 1,3-propane diamine by Mycobacterium convolutum.
J Bacteriol. 1975 Oct;124(1):285-9. doi: 10.1128/jb.124.1.285-289.1975.
4
A direct pathway for the conversion of propionate into pyruvate in Moraxella lwoffi.
Biochem J. 1968 Mar;107(1):7-18. doi: 10.1042/bj1070007.
5
Microbial oxidation and assimilation of propylene.
Appl Environ Microbiol. 1976 Dec;32(6):764-8. doi: 10.1128/aem.32.6.764-768.1976.
6
METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA.
J Bacteriol. 1963 May;85(5):1074-87. doi: 10.1128/jb.85.5.1074-1087.1963.
8
Role of Carbon Dioxide in Catabolism of Propane by "Nocardia paraffinicum" (Rhodococcus rhodochrous).
Appl Environ Microbiol. 1987 Jan;53(1):65-9. doi: 10.1128/aem.53.1.65-69.1987.

引用本文的文献

1
Genomic Analysis of Propane Metabolism in Methyl -Butyl Ether-Degrading Sp. Strain ENV421.
J Genomics. 2018 Mar 2;6:24-29. doi: 10.7150/jgen.24929. eCollection 2018.
2
Identification of metabolites produced from N-phenylpiperazine by Mycobacterium spp.
J Ind Microbiol Biotechnol. 2007 Mar;34(3):219-24. doi: 10.1007/s10295-006-0189-x. Epub 2006 Dec 22.
3
Novel acetone metabolism in a propane-utilizing bacterium, Gordonia sp. strain TY-5.
J Bacteriol. 2007 Feb;189(3):886-93. doi: 10.1128/JB.01054-06. Epub 2006 Oct 27.
4
Transformation of the antibacterial agent norfloxacin by environmental mycobacteria.
Appl Environ Microbiol. 2006 Sep;72(9):5790-3. doi: 10.1128/AEM.03032-05.
5
Product repression of alkane monooxygenase expression in Pseudomonas butanovora.
J Bacteriol. 2006 Apr;188(7):2586-92. doi: 10.1128/JB.188.7.2586-2592.2006.
6
Role of Carbon Dioxide in Catabolism of Propane by "Nocardia paraffinicum" (Rhodococcus rhodochrous).
Appl Environ Microbiol. 1987 Jan;53(1):65-9. doi: 10.1128/aem.53.1.65-69.1987.
7
New type of oxygenase involved in the metabolism of propane and isobutane.
Appl Environ Microbiol. 1984 Aug;48(2):260-4. doi: 10.1128/aem.48.2.260-264.1984.
8
Epoxidation of short-chain alkenes by resting-cell suspensions of propane-grown bacteria.
Appl Environ Microbiol. 1983 Jul;46(1):171-7. doi: 10.1128/aem.46.1.171-177.1983.
10
Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8.
Appl Environ Microbiol. 2001 Nov;67(11):4992-8. doi: 10.1128/AEM.67.11.4992-4998.2001.

本文引用的文献

1
Simultaneous Adaptation: A New Technique for the Study of Metabolic Pathways.
J Bacteriol. 1947 Sep;54(3):339-48. doi: 10.1128/jb.54.3.339-348.1947.
2
Protein measurement with the Folin phenol reagent.
J Biol Chem. 1951 Nov;193(1):265-75.
4
Bacterial oxidation of gaseous alkanes.
Arch Mikrobiol. 1960;35:92-104. doi: 10.1007/BF00425597.
5
LACTATE METABOLISM BY PEPTOSTREPTOCOCCUS ELSDENII: EVIDENCE FOR LACTYL COENZYME A DEHYDRASE.
Biochim Biophys Acta. 1965 Feb 15;97:202-13. doi: 10.1016/0304-4165(65)90084-x.
7
MICROBIAL INCORPORATION OF FATTY ACIDS DERIVED FROM N-ALKANES INTO GLYCERIDES AND WAXES.
Appl Microbiol. 1964 May;12(3):210-4. doi: 10.1128/am.12.3.210-214.1964.
8
METHYL KETONE METABOLISM IN HYDROCARBON-UTILIZING MYCOBACTERIA.
J Bacteriol. 1963 May;85(5):1074-87. doi: 10.1128/jb.85.5.1074-1087.1963.
9
Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation.
Biochim Biophys Acta. 1963 Jan 1;69:40-7. doi: 10.1016/0006-3002(63)91223-x.
10
Hydrocarbons as substrates for microorganisms.
Antonie Van Leeuwenhoek. 1962;28:241-74. doi: 10.1007/BF02538739.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验