Modarresi Hassan, Dearden John C, Modarress Hamid
Department of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), 424 Hafez Avenue, Tehran, Iran.
J Chem Inf Model. 2006 Mar-Apr;46(2):930-6. doi: 10.1021/ci050307n.
Five linear QSPR models for melting points (MP) of drug-like compounds are developed based on three different packages for molecular descriptor generation and a combined set of all descriptors. A data set of 323 gaseous, liquid, and solid compounds was used for this study. Two models from the combined set of descriptors based on stepwise regression and genetic algorithm (GA) descriptor selection methods have acceptable prediction abilities. The statistical results of these models are r2 = 0.673 and root-mean-square error (RMSE) of 40.4 degrees C for stepwise regression-based quantitative structure-property relationships (QSPRs) and r2 = 0.660 and RMSE of 41.1 degrees C for GA-based QSPRs. Interpretation of descriptors of all models showed a strong correlation of hydrogen bonding and molecular complexity with melting points of drug-like compounds.
基于三种不同的分子描述符生成软件包以及所有描述符的组合集,开发了五个用于类药物化合物熔点(MP)的线性定量构效关系(QSPR)模型。本研究使用了一个包含323种气态、液态和固态化合物的数据集。基于逐步回归和遗传算法(GA)描述符选择方法的两个来自描述符组合集的模型具有可接受的预测能力。这些模型的统计结果为:基于逐步回归的定量构效关系(QSPRs)的r2 = 0.673,均方根误差(RMSE)为40.4摄氏度;基于GA的QSPRs的r2 = 0.660,RMSE为41.1摄氏度。所有模型描述符的解释表明,氢键和分子复杂性与类药物化合物的熔点之间存在很强的相关性。