Suppr超能文献

必要性模型。

Models of necessity.

作者信息

Clark Timothy, Hicks Martin G

机构信息

Computer-Chemistry-Center, Department of Chemistry and Pharmacy, Friedrich-Alexander-University Erlangen-Nürnberg, Nägelsbachstr. 25, 91052 Erlangen, Germany.

Beilstein-Institut, Trakehner Str. 7-9, 60487 Frankfurt am Main, Germany.

出版信息

Beilstein J Org Chem. 2020 Jul 13;16:1649-1661. doi: 10.3762/bjoc.16.137. eCollection 2020.

Abstract

The way chemists represent chemical structures as two-dimensional sketches made up of atoms and bonds, simplifying the complex three-dimensional molecules comprising nuclei and electrons of the quantum mechanical description, is the everyday language of chemistry. This language uses models, particularly of bonding, that are not contained in the quantum mechanical description of chemical systems, but has been used to derive machine-readable formats for storing and manipulating chemical structures in digital computers. This language is fuzzy and varies from chemist to chemist but has been astonishingly successful and perhaps contributes with its fuzziness to the success of chemistry. It is this creative imagination of chemical structures that has been fundamental to the cognition of chemistry and has allowed thought experiments to take place. Within the everyday language, the model nature of these concepts is not always clear to practicing chemists, so that controversial discussions about the merits of alternative models often arise. However, the extensive use of artificial intelligence (AI) and machine learning (ML) in chemistry, with the aim of being able to make reliable predictions, will require that these models be extended to cover all relevant properties and characteristics of chemical systems. This, in turn, imposes conditions such as completeness, compactness, computational efficiency and non-redundancy on the extensions to the almost universal Lewis and VSEPR bonding models. Thus, AI and ML are likely to be important in rationalizing, extending and standardizing chemical bonding models. This will not affect the everyday language of chemistry but may help to understand the unique basis of chemical language.

摘要

化学家将化学结构表示为由原子和键组成的二维草图的方式,简化了包含量子力学描述中的原子核和电子的复杂三维分子,这是化学的日常语言。这种语言使用的模型,特别是键合模型,并不包含在化学系统的量子力学描述中,但已被用于推导机器可读格式,以便在数字计算机中存储和处理化学结构。这种语言模糊不清,不同化学家的理解也有所不同,但却取得了惊人的成功,也许正是其模糊性促成了化学的成功。正是这种对化学结构的创造性想象,构成了化学认知的基础,并使得思想实验得以进行。在日常语言中,这些概念的模型性质对于实际从事化学工作的人员来说并不总是清晰的,因此常常会引发关于不同模型优缺点的争议性讨论。然而,在化学中广泛使用人工智能(AI)和机器学习(ML),旨在能够做出可靠的预测,这将要求这些模型得到扩展,以涵盖化学系统的所有相关性质和特征。反过来,这又对几乎通用的路易斯和价层电子对互斥理论(VSEPR)键合模型的扩展提出了完备性、紧凑性、计算效率和非冗余性等条件。因此,人工智能和机器学习在使化学键合模型合理化、扩展和标准化方面可能会发挥重要作用。这不会影响化学的日常语言,但可能有助于理解化学语言的独特基础。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验