Arita Kyouhei, Shimizu Toshiyuki, Hashimoto Hiroshi, Hidaka Yuji, Yamada Michiyuki, Sato Mamoru
Field of Supramolecular Biology, International Graduate School of Arts and Sciences, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan.
Proc Natl Acad Sci U S A. 2006 Apr 4;103(14):5291-6. doi: 10.1073/pnas.0509639103. Epub 2006 Mar 27.
Histone arginine methylation is a posttranslational modification linked to the regulation of gene transcription. Unlike other posttranslational modifications, methylation has generally been regarded as stable, and enzymes that demethylate histone arginine residues have not been identified. However, it has recently been shown that human peptidylarginine deiminase 4 (PAD4), a Ca(2+)-dependent enzyme previously known to convert arginine residues to citrulline in histones, can also convert monomethylated arginine residues to citrulline both in vivo and in vitro. Citrullination of histone arginine residues by the enzyme antagonizes methylation by histone arginine methyltransferases and is thus a novel posttranslational modification that regulates the level of histone arginine methylation and gene activity. Here we present the crystal structures of a Ca(2+)-bound PAD4 mutant in complex with three histone N-terminal peptides, each consisting of 10 amino acid residues that include one target arginine residue for the enzyme (H3/Arg-8, H3/Arg-17, and H4/Arg-3). To each histone N-terminal peptide, the enzyme induces a beta-turn-like bent conformation composed of five successive residues at the molecular surface near the active site cleft. The remaining five residues are highly disordered. The enzyme recognizes each peptide through backbone atoms of the peptide with a possible consensus recognition motif. The sequence specificity of the peptide recognized by this enzyme is thought to be fairly broad. These observations provide structural insights into target protein recognition by histone modification enzymes and illustrate how PAD4 can target multiple arginine sites in the histone N-terminal tails.
组蛋白精氨酸甲基化是一种与基因转录调控相关的翻译后修饰。与其他翻译后修饰不同,甲基化通常被认为是稳定的,且尚未鉴定出可使组蛋白精氨酸残基去甲基化的酶。然而,最近研究表明,人肽基精氨酸脱亚氨酶4(PAD4),一种先前已知能在组蛋白中将精氨酸残基转化为瓜氨酸的钙依赖性酶,在体内和体外均能将单甲基化的精氨酸残基转化为瓜氨酸。该酶对组蛋白精氨酸残基的瓜氨酸化作用可拮抗组蛋白精氨酸甲基转移酶的甲基化作用,因此是一种调节组蛋白精氨酸甲基化水平和基因活性的新型翻译后修饰。在此,我们展示了一种与三种组蛋白N端肽段形成复合物的钙结合PAD4突变体的晶体结构,每种肽段由10个氨基酸残基组成,其中包括该酶的一个靶标精氨酸残基(H3/Arg-8、H3/Arg-17和H4/Arg-3)。对于每个组蛋白N端肽段,该酶在活性位点裂隙附近的分子表面诱导出由五个连续残基组成的类似β-转角的弯曲构象。其余五个残基高度无序。该酶通过肽段的主链原子识别每个肽段,可能存在一个共有识别基序。这种酶识别的肽段的序列特异性被认为相当广泛。这些观察结果为组蛋白修饰酶识别靶蛋白提供了结构上的见解,并说明了PAD4如何靶向组蛋白N端尾巴中的多个精氨酸位点。