Suppr超能文献

利用功能域改进跨膜蛋白拓扑结构预测。

The use of functional domains to improve transmembrane protein topology prediction.

作者信息

Xu Emily W, Kearney Paul, Brown Daniel G

机构信息

Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Calgary, HS-1150, 3330 Hospital Drive NW, Calgary, AB T2N 4N1, Canada.

出版信息

J Bioinform Comput Biol. 2006 Feb;4(1):109-23. doi: 10.1142/s0219720006001722.

Abstract

Transmembrane proteins affect vital cellular functions and pathogenesis, and are a focus of drug design. It is difficult to obtain diffraction quality crystals to study transmembrane protein structure. Computational tools for transmembrane protein topology prediction fill in the gap between the abundance of transmembrane proteins and the scarcity of known membrane protein structures. Their prediction accuracy is still inadequate: TMHMM, the current state-of-the-art method, has less than 52% accuracy in topology prediction on one set of transmembrane proteins of known topology. Based on the observation that there are functional domains that occur preferentially internal or external to the membrane, we have extended the model of TMHMM to incorporate functional domains, using a probabilistic approach originally developed for computational gene finding. Our extension is better than TMHMM in predicting the topology of transmembrane proteins. As prediction of functional domain improves, our system's prediction accuracy will likely improve as well.

摘要

跨膜蛋白影响着重要的细胞功能和发病机制,是药物设计的重点。获取用于研究跨膜蛋白结构的具有衍射质量的晶体很困难。跨膜蛋白拓扑结构预测的计算工具弥补了跨膜蛋白数量众多与已知膜蛋白结构稀缺之间的差距。它们的预测准确性仍然不足:当前最先进的方法TMHMM,在一组已知拓扑结构的跨膜蛋白的拓扑结构预测中,准确性低于52%。基于膜内部或外部优先出现功能域的观察结果,我们扩展了TMHMM模型以纳入功能域,使用最初为计算基因发现而开发的概率方法。我们的扩展在预测跨膜蛋白的拓扑结构方面比TMHMM更好。随着功能域预测的改进,我们系统的预测准确性可能也会提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验